-
Notifications
You must be signed in to change notification settings - Fork 113
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Quantized Test Data files : GatherOp (#2502)
refer parent PR #2404
- Loading branch information
Showing
39 changed files
with
623 additions
and
0 deletions.
There are no files selected for viewing
15 changes: 15 additions & 0 deletions
15
...hdims_shape__1__2__start_indices_shape__1__2__slice_sizes__1__1__enable_xla_True_qi8.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
// RUN: stablehlo-translate --interpret -split-input-file %s | ||
|
||
module attributes {jax.uses_shape_polymorphism = true} { | ||
func.func @main() -> tensor<i1> { | ||
%c = stablehlo.constant dense<[[0, 1]]> : tensor<1x2xi32> | ||
%cst = stablehlo.constant dense<[[-2.72349977, -0.208018199]]> : tensor<1x2xf32> | ||
%cst_0 = stablehlo.constant dense<0.000000e+00> : tensor<1xf32> | ||
%0 = stablehlo.uniform_quantize %cst : (tensor<1x2xf32>) -> tensor<1x2x!quant.uniform<i8:f32, 0.0039068778355916345:-128>> | ||
%1 = "stablehlo.gather"(%0, %c) <{dimension_numbers = #stablehlo.gather<collapsed_slice_dims = [0, 1], start_index_map = [0, 1], index_vector_dim = 1>, slice_sizes = array<i64: 1, 1>}> : (tensor<1x2x!quant.uniform<i8:f32, 0.0039068778355916345:-128>>, tensor<1x2xi32>) -> tensor<1x!quant.uniform<i8:f32, 0.0039068778355916345:-128>> | ||
%2 = stablehlo.uniform_quantize %1 : (tensor<1x!quant.uniform<i8:f32, 0.0039068778355916345:-128>>) -> tensor<1x!quant.uniform<i8:f32, 0.0038181253508025523:-128>> | ||
%3 = stablehlo.uniform_dequantize %2 : (tensor<1x!quant.uniform<i8:f32, 0.0038181253508025523:-128>>) -> tensor<1xf32> | ||
%4 = stablehlo.custom_call @check.eq(%cst_0, %3) : (tensor<1xf32>, tensor<1xf32>) -> tensor<i1> | ||
return %4 : tensor<i1> | ||
} | ||
} |
15 changes: 15 additions & 0 deletions
15
...shape__2__3__3__start_indices_shape__2__3__slice_sizes__1__3__2__enable_xla_True_qi8.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
// RUN: stablehlo-translate --interpret -split-input-file %s | ||
|
||
module attributes {jax.uses_shape_polymorphism = true} { | ||
func.func @main() -> tensor<i1> { | ||
%c = stablehlo.constant dense<[[0, 1, 0], [1, 2, 1]]> : tensor<2x3xi32> | ||
%cst = stablehlo.constant dense<[[[-2.31606197, -1.45022011, -1.72503948], [-4.47900438, -5.43648243, -4.72877312], [4.36842155, -1.49977052, -2.34371066]], [[-2.62882113, -3.40511084, 0.60867834], [-2.19209099, -0.954817473, -0.967517852], [-0.497551709, 6.707040e-01, -6.8893342]]]> : tensor<2x3x3xf32> | ||
%cst_0 = stablehlo.constant dense<[[[0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00], [0.997889161, 0.000000e+00]], [[0.000000e+00, 0.606560051], [0.000000e+00, 0.000000e+00], [0.669172704, 0.000000e+00]]]> : tensor<2x3x2xf32> | ||
%0 = stablehlo.uniform_quantize %cst : (tensor<2x3x3xf32>) -> tensor<2x3x3x!quant.uniform<i8:f32, 0.0039188104517319626:-128>> | ||
%1 = "stablehlo.gather"(%0, %c) <{dimension_numbers = #stablehlo.gather<offset_dims = [1, 2], collapsed_slice_dims = [0], start_index_map = [0, 1, 2], index_vector_dim = 1>, slice_sizes = array<i64: 1, 3, 2>}> : (tensor<2x3x3x!quant.uniform<i8:f32, 0.0039188104517319626:-128>>, tensor<2x3xi32>) -> tensor<2x3x2x!quant.uniform<i8:f32, 0.0039188104517319626:-128>> | ||
%2 = stablehlo.uniform_quantize %1 : (tensor<2x3x2x!quant.uniform<i8:f32, 0.0039188104517319626:-128>>) -> tensor<2x3x2x!quant.uniform<i8:f32, 0.0039132908278820561:-128>> | ||
%3 = stablehlo.uniform_dequantize %2 : (tensor<2x3x2x!quant.uniform<i8:f32, 0.0039132908278820561:-128>>) -> tensor<2x3x2xf32> | ||
%4 = stablehlo.custom_call @check.eq(%cst_0, %3) : (tensor<2x3x2xf32>, tensor<2x3x2xf32>) -> tensor<i1> | ||
return %4 : tensor<i1> | ||
} | ||
} |
15 changes: 15 additions & 0 deletions
15
...shape__2__6__3__start_indices_shape__2__3__slice_sizes__1__3__3__enable_xla_True_qi8.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
// RUN: stablehlo-translate --interpret -split-input-file %s | ||
|
||
module attributes {jax.uses_shape_polymorphism = true} { | ||
func.func @main() -> tensor<i1> { | ||
%c = stablehlo.constant dense<[[0, 1, 0], [1, 2, 0]]> : tensor<2x3xi32> | ||
%cst = stablehlo.constant dense<[[[3.82548904, 0.791181862, -2.22872925], [1.47356987, 3.81562257, -4.14531422], [-2.14515972, 1.42112124, 4.571450e+00], [-1.68962431, 3.14189243, 5.90857506], [3.88763309, 3.85987115, 0.356856197], [0.954816877, 1.0329355, -0.830992698]], [[-2.23060846, 0.0469221957, -0.450263053], [-6.04691744, 6.02806186, -2.51375771], [0.53378284, 3.34858298, 1.84060633], [3.92621756, -1.48187923, 3.34925771], [-2.8641305, 0.439090401, 4.06969261], [-7.4090166, 3.41720462, -4.32454443]]]> : tensor<2x6x3xf32> | ||
%cst_0 = stablehlo.constant dense<[[[0.998835206, 0.998835206, 0.000000e+00], [0.000000e+00, 0.998835206, 0.998835206], [0.000000e+00, 0.998835206, 0.998835206]], [[0.532712102, 0.998835206, 0.998835206], [0.998835206, 0.000000e+00, 0.998835206], [0.000000e+00, 0.438704073, 0.998835206]]]> : tensor<2x3x3xf32> | ||
%0 = stablehlo.uniform_quantize %cst : (tensor<2x6x3xf32>) -> tensor<2x6x3x!quant.uniform<i8:f32, 0.0039215482917486456:-128>> | ||
%1 = "stablehlo.gather"(%0, %c) <{dimension_numbers = #stablehlo.gather<offset_dims = [1, 2], collapsed_slice_dims = [0], start_index_map = [0, 1, 2], index_vector_dim = 1>, slice_sizes = array<i64: 1, 3, 3>}> : (tensor<2x6x3x!quant.uniform<i8:f32, 0.0039215482917486456:-128>>, tensor<2x3xi32>) -> tensor<2x3x3x!quant.uniform<i8:f32, 0.0039215482917486456:-128>> | ||
%2 = stablehlo.uniform_quantize %1 : (tensor<2x3x3x!quant.uniform<i8:f32, 0.0039215482917486456:-128>>) -> tensor<2x3x3x!quant.uniform<i8:f32, 0.0039170005742241356:-128>> | ||
%3 = stablehlo.uniform_dequantize %2 : (tensor<2x3x3x!quant.uniform<i8:f32, 0.0039170005742241356:-128>>) -> tensor<2x3x3xf32> | ||
%4 = stablehlo.custom_call @check.eq(%cst_0, %3) : (tensor<2x3x3xf32>, tensor<2x3x3xf32>) -> tensor<i1> | ||
return %4 : tensor<i1> | ||
} | ||
} |
15 changes: 15 additions & 0 deletions
15
...dims_shape__3__10__start_indices_shape__3__2__slice_sizes__1__5__enable_xla_True_qi8.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
// RUN: stablehlo-translate --interpret -split-input-file %s | ||
|
||
module attributes {jax.uses_shape_polymorphism = true} { | ||
func.func @main() -> tensor<i1> { | ||
%c = stablehlo.constant dense<[[0, 0], [1, 8], [2, 0]]> : tensor<3x2xi32> | ||
%cst = stablehlo.constant dense<[[-0.786750376, -0.429459691, -2.42140698, 0.0205181241, -0.394114822, -2.58621716, -1.07088399, 3.29197717, -3.44814229, -0.25225088], [1.27824605, -2.20641971, 1.13592541, 2.04215646, -1.61209357, 3.22753859, -1.28165495, 3.17407966, 2.02299929, 2.47564316], [0.905838906, 3.71254492, 1.97064459, 3.77753663, 1.49392521, 4.79311323, 3.70975041, -1.04468286, 3.31870532, 1.45112896]]> : tensor<3x10xf32> | ||
%cst_0 = stablehlo.constant dense<[[0.000000e+00, 0.000000e+00, 0.000000e+00, 0.0195749179, 0.000000e+00], [0.998320758, 0.000000e+00, 0.998320758, 0.998320758, 0.998320758], [0.904361188, 0.998320758, 0.998320758, 0.998320758, 0.998320758]]> : tensor<3x5xf32> | ||
%0 = stablehlo.uniform_quantize %cst : (tensor<3x10xf32>) -> tensor<3x10x!quant.uniform<i8:f32, 0.0039189298947652183:-128>> | ||
%1 = "stablehlo.gather"(%0, %c) <{dimension_numbers = #stablehlo.gather<offset_dims = [1], collapsed_slice_dims = [0], start_index_map = [0, 1], index_vector_dim = 1>, slice_sizes = array<i64: 1, 5>}> : (tensor<3x10x!quant.uniform<i8:f32, 0.0039189298947652183:-128>>, tensor<3x2xi32>) -> tensor<3x5x!quant.uniform<i8:f32, 0.0039189298947652183:-128>> | ||
%2 = stablehlo.uniform_quantize %1 : (tensor<3x5x!quant.uniform<i8:f32, 0.0039189298947652183:-128>>) -> tensor<3x5x!quant.uniform<i8:f32, 0.0039149835997936769:-128>> | ||
%3 = stablehlo.uniform_dequantize %2 : (tensor<3x5x!quant.uniform<i8:f32, 0.0039149835997936769:-128>>) -> tensor<3x5xf32> | ||
%4 = stablehlo.custom_call @check.eq(%cst_0, %3) : (tensor<3x5xf32>, tensor<3x5xf32>) -> tensor<i1> | ||
return %4 : tensor<i1> | ||
} | ||
} |
15 changes: 15 additions & 0 deletions
15
...hdims_shape__4__6__start_indices_shape__4__2__slice_sizes__1__3__enable_xla_True_qi8.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
// RUN: stablehlo-translate --interpret -split-input-file %s | ||
|
||
module attributes {jax.uses_shape_polymorphism = true} { | ||
func.func @main() -> tensor<i1> { | ||
%c = stablehlo.constant dense<[[0, 1], [1, 2], [2, 3], [3, 2]]> : tensor<4x2xi32> | ||
%cst = stablehlo.constant dense<[[-2.82557797, 2.39072633, 1.59782159, 5.14471102, -0.118122488, 1.23312056], [-1.81219053, -2.04905701, 2.10215306, -1.29667866, -0.0825303718, 1.88295043], [2.51706767, 0.0771943628, 2.18911791, -0.366536409, -2.39656186, 0.698230087], [2.96748114, 0.137859881, 1.44472873, -1.30095637, 1.24915195, -2.93037224]]> : tensor<4x6xf32> | ||
%cst_0 = stablehlo.constant dense<[[0.997595727, 0.997595727, 0.997595727], [0.997595727, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.696360946], [0.997595727, 0.000000e+00, 0.997595727]]> : tensor<4x3xf32> | ||
%0 = stablehlo.uniform_quantize %cst : (tensor<4x6xf32>) -> tensor<4x6x!quant.uniform<i8:f32, 0.0039172410964965817:-128>> | ||
%1 = "stablehlo.gather"(%0, %c) <{dimension_numbers = #stablehlo.gather<offset_dims = [1], collapsed_slice_dims = [0], start_index_map = [0, 1], index_vector_dim = 1>, slice_sizes = array<i64: 1, 3>}> : (tensor<4x6x!quant.uniform<i8:f32, 0.0039172410964965817:-128>>, tensor<4x2xi32>) -> tensor<4x3x!quant.uniform<i8:f32, 0.0039172410964965817:-128>> | ||
%2 = stablehlo.uniform_quantize %1 : (tensor<4x3x!quant.uniform<i8:f32, 0.0039172410964965817:-128>>) -> tensor<4x3x!quant.uniform<i8:f32, 0.0039121401076223335:-128>> | ||
%3 = stablehlo.uniform_dequantize %2 : (tensor<4x3x!quant.uniform<i8:f32, 0.0039121401076223335:-128>>) -> tensor<4x3xf32> | ||
%4 = stablehlo.custom_call @check.eq(%cst_0, %3) : (tensor<4x3xf32>, tensor<4x3xf32>) -> tensor<i1> | ||
return %4 : tensor<i1> | ||
} | ||
} |
19 changes: 19 additions & 0 deletions
19
stablehlo/testdata/quantized/gather_from_slicing_name___0_1___enable_xla_True_qi8.mlir
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
// RUN: stablehlo-translate --interpret -split-input-file %s | ||
|
||
module attributes {jax.uses_shape_polymorphism = true} { | ||
func.func @main() -> tensor<i1> { | ||
%c = stablehlo.constant dense<1> : tensor<i32> | ||
%c_0 = stablehlo.constant dense<0> : tensor<i32> | ||
%cst = stablehlo.constant dense<"0x000000000000803F0000004000004040000080400000A0400000C0400000E0400000004100001041000020410000304100004041000050410000604100007041000080410000884100009041000098410000A0410000A8410000B0410000B8410000C0410000C8410000D0410000D8410000E0410000E8410000F0410000F84100000042000004420000084200000C4200001042000014420000184200001C4200002042000024420000284200002C4200003042000034420000384200003C4200004042000044420000484200004C4200005042000054420000584200005C4200006042000064420000684200006C4200007042000074420000784200007C42000080420000824200008442000086420000884200008A4200008C4200008E42000090420000924200009442000096420000984200009A4200009C4200009E420000A0420000A2420000A4420000A6420000A8420000AA420000AC420000AE420000B0420000B2420000B4420000B6420000B8420000BA420000BC420000BE420000C0420000C2420000C4420000C6420000C8420000CA420000CC420000CE420000D0420000D2420000D4420000D6420000D8420000DA420000DC420000DE420000E0420000E2420000E4420000E6420000E8420000EA420000EC420000EE420000F0420000F2420000F4420000F6420000F8420000FA420000FC420000FE420000004300000143000002430000034300000443000005430000064300000743000008430000094300000A4300000B4300000C4300000D4300000E4300000F430000104300001143000012430000134300001443000015430000164300001743000018430000194300001A4300001B4300001C4300001D4300001E4300001F430000204300002143000022430000234300002443000025430000264300002743000028430000294300002A4300002B4300002C4300002D4300002E4300002F430000304300003143000032430000334300003443000035430000364300003743000038430000394300003A4300003B4300003C4300003D4300003E4300003F430000404300004143000042430000434300004443000045430000464300004743000048430000494300004A4300004B4300004C4300004D4300004E4300004F430000504300005143000052430000534300005443000055430000564300005743000058430000594300005A4300005B4300005C4300005D4300005E4300005F430000604300006143000062430000634300006443000065430000664300006743000068430000694300006A4300006B4300006C4300006D4300006E4300006F430000704300007143000072430000734300007443000075430000764300007743000078430000794300007A4300007B4300007C4300007D4300007E4300007F43000080430080804300008143008081430000824300808243000083430080834300008443008084430000854300808543000086430080864300008743008087430000884300808843000089430080894300008A4300808A4300008B4300808B4300008C4300808C4300008D4300808D4300008E4300808E4300008F4300808F43000090430080904300009143008091430000924300809243000093430080934300009443008094430000954300809543000096430080964300009743008097430000984300809843000099430080994300009A4300809A4300009B4300809B4300009C4300809C4300009D4300809D4300009E4300809E4300009F4300809F430000A0430080A0430000A1430080A1430000A2430080A2430000A3430080A3430000A4430080A4430000A5430080A5430000A6430080A6430000A7430080A7430000A8430080A8430000A9430080A9430000AA430080AA430000AB430080AB430000AC430080AC430000AD430080AD430000AE430080AE430000AF430080AF430000B0430080B0430000B1430080B1430000B2430080B2430000B3430080B3430000B4430080B4430000B5430080B5430000B6430080B6430000B7430080B7430000B8430080B8430000B9430080B9430000BA430080BA430000BB430080BB430000BC430080BC430000BD430080BD430000BE430080BE430000BF430080BF430000C0430080C0430000C1430080C1430000C2430080C2430000C3430080C3430000C4430080C4430000C5430080C5430000C6430080C6430000C7430080C7430000C8430080C8430000C9430080C9430000CA430080CA430000CB430080CB430000CC430080CC430000CD430080CD430000CE430080CE430000CF430080CF430000D0430080D0430000D1430080D1430000D2430080D2430000D3430080D3430000D4430080D4430000D5430080D5430000D6430080D6430000D7430080D7430000D8430080D8430000D9430080D9430000DA430080DA430000DB430080DB430000DC430080DC430000DD430080DD430000DE430080DE430000DF430080DF430000E0430080E0430000E1430080E1430000E2430080E2430000E3430080E3430000E4430080E4430000E5430080E5430000E6430080E6430000E7430080E7430000E8430080E8430000E9430080E9430000EA430080EA430000EB430080EB430000EC430080EC430000ED430080ED430000EE430080EE430000EF430080EF430000F0430080F0430000F1430080F1430000F2430080F2430000F3430080F3430000F4430080F4430000F5430080F5430000F6430080F6430000F7430080F7430000F8430080F8430000F9430080F9430000FA430080FA430000FB430080FB430000FC430080FC430000FD430080FD430000FE430080FE430000FF430080FF4300000044004000440080004400C0004400000144004001440080014400C0014400000244004002440080024400C0024400000344004003440080034400C0034400000444004004440080044400C0044400000544004005440080054400C0054400000644004006440080064400C0064400000744004007440080074400C0074400000844004008440080084400C0084400000944004009440080094400C0094400000A4400400A4400800A4400C00A4400000B4400400B4400800B4400C00B4400000C4400400C4400800C4400C00C4400000D4400400D4400800D4400C00D4400000E4400400E4400800E4400C00E4400000F4400400F4400800F4400C00F4400001044004010440080104400C0104400001144004011440080114400C0114400001244004012440080124400C0124400001344004013440080134400C0134400001444004014440080144400C0144400001544004015440080154400C0154400001644004016440080164400C0164400001744004017440080174400C0174400001844004018440080184400C0184400001944004019440080194400C0194400001A4400401A4400801A4400C01A4400001B4400401B4400801B4400C01B4400001C4400401C4400801C4400C01C4400001D4400401D4400801D4400C01D4400001E4400401E4400801E4400C01E4400001F4400401F4400801F4400C01F4400002044004020440080204400C0204400002144004021440080214400C0214400002244004022440080224400C0224400002344004023440080234400C0234400002444004024440080244400C0244400002544004025440080254400C0254400002644004026440080264400C0264400002744004027440080274400C0274400002844004028440080284400C0284400002944004029440080294400C0294400002A4400402A4400802A4400C02A4400002B4400402B4400802B4400C02B4400002C4400402C4400802C4400C02C4400002D4400402D4400802D4400C02D4400002E4400402E4400802E4400C02E4400002F4400402F4400802F4400C02F4400003044004030440080304400C0304400003144004031440080314400C0314400003244004032440080324400C0324400003344004033440080334400C0334400003444004034440080344400C0344400003544004035440080354400C0354400003644004036440080364400C0364400003744004037440080374400C0374400003844004038440080384400C0384400003944004039440080394400C0394400003A4400403A4400803A4400C03A4400003B4400403B4400803B4400C03B4400003C4400403C4400803C4400C03C4400003D4400403D4400803D4400C03D4400003E4400403E4400803E4400C03E4400003F4400403F4400803F4400C03F4400004044004040440080404400C0404400004144004041440080414400C0414400004244004042440080424400C0424400004344004043440080434400C0434400004444004044440080444400C0444400004544004045440080454400C0454400004644004046440080464400C0464400004744004047440080474400C0474400004844004048440080484400C0484400004944004049440080494400C0494400004A4400404A4400804A4400C04A4400004B4400404B4400804B4400C04B4400004C4400404C4400804C4400C04C4400004D4400404D4400804D4400C04D4400004E4400404E4400804E4400C04E4400004F4400404F4400804F4400C04F4400005044004050440080504400C0504400005144004051440080514400C0514400005244004052440080524400C0524400005344004053440080534400C0534400005444004054440080544400C0544400005544004055440080554400C0554400005644004056440080564400C0564400005744004057440080574400C0574400005844004058440080584400C0584400005944004059440080594400C0594400005A4400405A4400805A4400C05A4400005B4400405B4400805B4400C05B4400005C4400405C4400805C4400C05C4400005D4400405D4400805D4400C05D4400005E4400405E4400805E4400C05E4400005F4400405F4400805F4400C05F4400006044004060440080604400C0604400006144004061440080614400C0614400006244004062440080624400C0624400006344004063440080634400C0634400006444004064440080644400C0644400006544004065440080654400C0654400006644004066440080664400C0664400006744004067440080674400C0674400006844004068440080684400C0684400006944004069440080694400C0694400006A4400406A4400806A4400C06A4400006B4400406B4400806B4400C06B4400006C4400406C4400806C4400C06C4400006D4400406D4400806D4400C06D4400006E4400406E4400806E4400C06E4400006F4400406F4400806F4400C06F4400007044004070440080704400C0704400007144004071440080714400C0714400007244004072440080724400C0724400007344004073440080734400C0734400007444004074440080744400C0744400007544004075440080754400C0754400007644004076440080764400C0764400007744004077440080774400C0774400007844004078440080784400C0784400007944004079440080794400C07944"> : tensor<10x10x10xf32> | ||
%cst_1 = stablehlo.constant dense<0.999198794> : tensor<10xf32> | ||
%0 = stablehlo.uniform_quantize %cst : (tensor<10x10x10xf32>) -> tensor<10x10x10x!quant.uniform<i8:f32, 0.0039215482917486456:-128>> | ||
%1 = stablehlo.reshape %c_0 : (tensor<i32>) -> tensor<1xi32> | ||
%2 = stablehlo.reshape %c : (tensor<i32>) -> tensor<1xi32> | ||
%3 = stablehlo.concatenate %1, %2, dim = 0 : (tensor<1xi32>, tensor<1xi32>) -> tensor<2xi32> | ||
%4 = "stablehlo.gather"(%0, %3) <{dimension_numbers = #stablehlo.gather<offset_dims = [0], collapsed_slice_dims = [0, 1], start_index_map = [0, 1]>, indices_are_sorted = true, slice_sizes = array<i64: 1, 1, 10>}> : (tensor<10x10x10x!quant.uniform<i8:f32, 0.0039215482917486456:-128>>, tensor<2xi32>) -> tensor<10x!quant.uniform<i8:f32, 0.0039215482917486456:-128>> | ||
%5 = stablehlo.uniform_quantize %4 : (tensor<10x!quant.uniform<i8:f32, 0.0039215482917486456:-128>>) -> tensor<10x!quant.uniform<i8:f32, 0.0039184264108246452:-128>> | ||
%6 = stablehlo.uniform_dequantize %5 : (tensor<10x!quant.uniform<i8:f32, 0.0039184264108246452:-128>>) -> tensor<10xf32> | ||
%7 = stablehlo.custom_call @check.eq(%cst_1, %6) : (tensor<10xf32>, tensor<10xf32>) -> tensor<i1> | ||
return %7 : tensor<i1> | ||
} | ||
} |
Oops, something went wrong.