Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Hotfix: fix wrong domain in tiling rotated detection #3141

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,7 +1,95 @@
"""Tiling Pipeline of EfficientNetB2B model for Instance-Seg Task."""
"""Tiling Pipeline of EfficientNetB2B model."""

# Copyright (C) 2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
chuneuny-emily marked this conversation as resolved.
Show resolved Hide resolved

# pylint: disable=invalid-name

_base_ = ["../../base/data/tiling/efficientnet_iseg_tile_pipeline.py"]
img_size = (512, 512)

tile_cfg = dict(
tile_size=400, min_area_ratio=0.9, overlap_ratio=0.2, iou_threshold=0.45, max_per_img=1500, filter_empty_gt=True
)

img_norm_cfg = dict(mean=(103.53, 116.28, 123.675), std=(1.0, 1.0, 1.0), to_rgb=True)

train_pipeline = [
dict(type="Resize", img_scale=img_size, keep_ratio=False),
dict(type="RandomFlip", flip_ratio=0.5),
dict(type="Normalize", **img_norm_cfg),
dict(type="Pad", size_divisor=32),
dict(type="DefaultFormatBundle"),
dict(
type="Collect",
keys=["img", "gt_bboxes", "gt_labels", "gt_masks"],
meta_keys=[
"filename",
"ori_filename",
"ori_shape",
"img_shape",
"pad_shape",
"scale_factor",
"flip",
"flip_direction",
"img_norm_cfg",
],
),
]

test_pipeline = [
dict(
type="MultiScaleFlipAug",
img_scale=img_size,
flip=False,
transforms=[
dict(type="Resize", keep_ratio=False),
dict(type="RandomFlip"),
dict(type="Normalize", **img_norm_cfg),
dict(type="Pad", size_divisor=32),
dict(type="ImageToTensor", keys=["img"]),
dict(type="Collect", keys=["img"]),
],
)
]

__dataset_type = "OTXDetDataset"

train_dataset = dict(
type="ImageTilingDataset",
dataset=dict(
type=__dataset_type,
pipeline=[
dict(type="LoadImageFromOTXDataset", enable_memcache=True),
dict(type="LoadAnnotationFromOTXDataset", domain="rotated_detection", with_bbox=True, with_mask=True),
],
),
pipeline=train_pipeline,
**tile_cfg
)

val_dataset = dict(
type="ImageTilingDataset",
dataset=dict(
type=__dataset_type,
pipeline=[
dict(type="LoadImageFromOTXDataset", enable_memcache=True),
dict(type="LoadAnnotationFromOTXDataset", domain="rotated_detection", with_bbox=True, with_mask=True),
],
),
pipeline=test_pipeline,
**tile_cfg
)

test_dataset = dict(
type="ImageTilingDataset",
dataset=dict(
type=__dataset_type,
test_mode=True,
pipeline=[dict(type="LoadImageFromOTXDataset")],
),
pipeline=test_pipeline,
**tile_cfg
)


data = dict(train=train_dataset, val=val_dataset, test=test_dataset)
Original file line number Diff line number Diff line change
@@ -1,7 +1,95 @@
"""Tiling Pipeline of Resnet model for Instance-Seg Task."""
"""Tiling Pipeline for Rotated-Detection Task."""

# Copyright (C) 2023 Intel Corporation
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

# pylint: disable=invalid-name

_base_ = ["../../base/data/tiling/base_iseg_tile_pipeline.py"]
img_size = (512, 512)

tile_cfg = dict(
tile_size=400, min_area_ratio=0.9, overlap_ratio=0.2, iou_threshold=0.45, max_per_img=1500, filter_empty_gt=True
)

img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
dict(type="Resize", img_scale=img_size, keep_ratio=True),
dict(type="RandomFlip", flip_ratio=0.5),
dict(type="Normalize", **img_norm_cfg),
dict(type="Pad", size=img_size),
dict(type="DefaultFormatBundle"),
dict(
type="Collect",
keys=["img", "gt_bboxes", "gt_labels", "gt_masks"],
meta_keys=[
"filename",
"ori_filename",
"ori_shape",
"img_shape",
"pad_shape",
"scale_factor",
"flip",
"flip_direction",
"img_norm_cfg",
],
),
]

test_pipeline = [
dict(
type="MultiScaleFlipAug",
img_scale=img_size,
flip=False,
transforms=[
dict(type="Resize", keep_ratio=True),
dict(type="RandomFlip"),
dict(type="Normalize", **img_norm_cfg),
dict(type="Pad", size=img_size),
dict(type="ImageToTensor", keys=["img"]),
dict(type="Collect", keys=["img"]),
],
)
]

__dataset_type = "OTXDetDataset"

train_dataset = dict(
type="ImageTilingDataset",
dataset=dict(
type=__dataset_type,
pipeline=[
dict(type="LoadImageFromOTXDataset", enable_memcache=True),
dict(type="LoadAnnotationFromOTXDataset", domain="rotated_detection", with_bbox=True, with_mask=True),
],
),
pipeline=train_pipeline,
**tile_cfg
)

val_dataset = dict(
type="ImageTilingDataset",
dataset=dict(
type=__dataset_type,
pipeline=[
dict(type="LoadImageFromOTXDataset", enable_memcache=True),
dict(type="LoadAnnotationFromOTXDataset", domain="rotated_detection", with_bbox=True, with_mask=True),
],
),
pipeline=test_pipeline,
**tile_cfg
)

test_dataset = dict(
type="ImageTilingDataset",
dataset=dict(
type=__dataset_type,
test_mode=True,
pipeline=[dict(type="LoadImageFromOTXDataset")],
),
pipeline=test_pipeline,
**tile_cfg
)


data = dict(train=train_dataset, val=val_dataset, test=test_dataset)
Loading