Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix label list order for h-label classification #2440

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 15 additions & 2 deletions src/otx/algorithms/classification/adapters/openvino/task.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,7 @@
from otx.algorithms.classification.utils import (
get_cls_deploy_config,
get_cls_inferencer_configuration,
get_hierarchical_label_list,
)
from otx.algorithms.common.utils import OTXOpenVinoDataLoader
from otx.algorithms.common.utils.ir import check_if_quantized
Expand Down Expand Up @@ -228,12 +229,18 @@ def add_prediction(id: int, predicted_scene: AnnotationSceneEntity, aux_data: tu
if saliency_map is not None and repr_vector is not None:
feature_vec_media = TensorEntity(name="representation_vector", numpy=repr_vector.reshape(-1))
dataset_item.append_metadata_item(feature_vec_media, model=self.model)
label_list = self.task_environment.get_labels()
# Fix the order for hierarchical labels to adjust classes with model outputs
if self.inferencer.model.hierarchical:
label_list = get_hierarchical_label_list(
self.inferencer.model.hierarchical_info["cls_heads_info"], label_list
)

add_saliency_maps_to_dataset_item(
dataset_item=dataset_item,
saliency_map=saliency_map,
model=self.model,
labels=self.task_environment.get_labels(),
labels=label_list,
predicted_scored_labels=item_labels,
explain_predicted_classes=explain_predicted_classes,
process_saliency_maps=process_saliency_maps,
Expand Down Expand Up @@ -284,6 +291,12 @@ def explain(
explain_predicted_classes = explain_parameters.explain_predicted_classes

dataset_size = len(dataset)
label_list = self.task_environment.get_labels()
# Fix the order for hierarchical labels to adjust classes with model outputs
if self.inferencer.model.hierarchical:
label_list = get_hierarchical_label_list(
self.inferencer.model.hierarchical_info["cls_heads_info"], label_list
)
for i, dataset_item in enumerate(dataset, 1):
predicted_scene, _, saliency_map, _, _ = self.inferencer.predict(dataset_item.numpy)
if saliency_map is None:
Expand All @@ -298,7 +311,7 @@ def explain(
dataset_item=dataset_item,
saliency_map=saliency_map,
model=self.model,
labels=self.task_environment.get_labels(),
labels=label_list,
predicted_scored_labels=item_labels,
explain_predicted_classes=explain_predicted_classes,
process_saliency_maps=process_saliency_maps,
Expand Down
13 changes: 11 additions & 2 deletions src/otx/algorithms/classification/task.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
get_cls_deploy_config,
get_cls_inferencer_configuration,
get_cls_model_api_configuration,
get_hierarchical_label_list,
)
from otx.algorithms.classification.utils import (
get_multihead_class_info as get_hierarchical_info,
Expand Down Expand Up @@ -345,6 +346,10 @@ def _add_predictions_to_dataset(

dataset_size = len(dataset)
pos_thr = 0.5
label_list = self._labels
# Fix the order for hierarchical labels to adjust classes with model outputs
if self._hierarchical:
label_list = get_hierarchical_label_list(self._hierarchical_info, label_list)
for i, (dataset_item, prediction_items) in enumerate(zip(dataset, prediction_results)):
prediction_item, feature_vector, saliency_map = prediction_items
if any(np.isnan(prediction_item)):
Expand Down Expand Up @@ -373,7 +378,7 @@ def _add_predictions_to_dataset(
dataset_item=dataset_item,
saliency_map=saliency_map,
model=self._task_environment.model,
labels=self._labels,
labels=label_list,
predicted_scored_labels=item_labels,
explain_predicted_classes=explain_predicted_classes,
process_saliency_maps=process_saliency_maps,
Expand Down Expand Up @@ -436,13 +441,17 @@ def _add_explanations_to_dataset(
):
"""Loop over dataset again and assign saliency maps."""
dataset_size = len(dataset)
label_list = self._labels
# Fix the order for hierarchical labels to adjust classes with model outputs
if self._hierarchical:
label_list = get_hierarchical_label_list(self._hierarchical_info, label_list)
for i, (dataset_item, prediction_item, saliency_map) in enumerate(zip(dataset, predictions, saliency_maps)):
item_labels = self._get_item_labels(prediction_item, pos_thr=0.5)
add_saliency_maps_to_dataset_item(
dataset_item=dataset_item,
saliency_map=saliency_map,
model=self._task_environment.model,
labels=self._labels,
labels=label_list,
predicted_scored_labels=item_labels,
explain_predicted_classes=explain_predicted_classes,
process_saliency_maps=process_saliency_maps,
Expand Down
2 changes: 2 additions & 0 deletions src/otx/algorithms/classification/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,10 +8,12 @@
get_cls_deploy_config,
get_cls_inferencer_configuration,
get_cls_model_api_configuration,
get_hierarchical_label_list,
get_multihead_class_info,
)

__all__ = [
"get_hierarchical_label_list",
"get_multihead_class_info",
"get_cls_inferencer_configuration",
"get_cls_deploy_config",
Expand Down
21 changes: 21 additions & 0 deletions src/otx/algorithms/classification/utils/cls_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,3 +117,24 @@ def get_cls_model_api_configuration(label_schema: LabelSchemaEntity, inference_c

mapi_config[("model_info", "hierarchical_config")] = json.dumps(hierarchical_config)
return mapi_config


def get_hierarchical_label_list(hierarchical_info, labels):
"""Return hierarchical labels list which is adjusted to model outputs classes."""
hierarchical_labels = []
for head_idx in range(hierarchical_info["num_multiclass_heads"]):
logits_begin, logits_end = hierarchical_info["head_idx_to_logits_range"][str(head_idx)]
for logit in range(0, logits_end - logits_begin):
label_str = hierarchical_info["all_groups"][head_idx][logit]
label_idx = hierarchical_info["label_to_idx"][label_str]
hierarchical_labels.append(labels[label_idx])

if hierarchical_info["num_multilabel_classes"]:
logits_begin = hierarchical_info["num_single_label_classes"]
logits_end = len(labels)
for logit_idx, logit in enumerate(range(0, logits_end - logits_begin)):
label_str_idx = hierarchical_info["num_multiclass_heads"] + logit_idx
label_str = hierarchical_info["all_groups"][label_str_idx][0]
label_idx = hierarchical_info["label_to_idx"][label_str]
hierarchical_labels.append(labels[label_idx])
return hierarchical_labels
Original file line number Diff line number Diff line change
Expand Up @@ -182,6 +182,7 @@ def test_explain(self, mocker):
self.fake_input,
),
)
self.cls_ov_task.inferencer.model.hierarchical = False
updpated_dataset = self.cls_ov_task.explain(self.dataset)

assert updpated_dataset is not None
Expand Down