-
Notifications
You must be signed in to change notification settings - Fork 446
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
91ad751
commit c99c36b
Showing
2 changed files
with
216 additions
and
0 deletions.
There are no files selected for viewing
4 changes: 4 additions & 0 deletions
4
tests/unit/algorithms/detection/adapters/mmdet/models/heads/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
"""Unit tests for src/otx/algorithms/detection/adapters/mmdet/models/heads.""" | ||
# Copyright (C) 2023 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# |
212 changes: 212 additions & 0 deletions
212
tests/unit/algorithms/detection/adapters/mmdet/models/heads/test_custom_dino_head.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,212 @@ | ||
"""Unit tests for CustomDINOHead.""" | ||
# Copyright (C) 2023 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
# | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
from mmcv.utils import ConfigDict | ||
from mmdet.core import build_assigner | ||
from mmdet.models.builder import build_detector | ||
|
||
from tests.test_suite.e2e_test_system import e2e_pytest_unit | ||
|
||
|
||
class TestCustomDINOHead: | ||
@pytest.fixture(autouse=True) | ||
def setup(self): | ||
torch.manual_seed(5) | ||
cfg = ConfigDict( | ||
dict( | ||
type="CustomDINOHead", | ||
num_query=900, | ||
num_classes=80, | ||
in_channels=2048, | ||
sync_cls_avg_factor=True, | ||
with_box_refine=True, | ||
as_two_stage=True, | ||
transformer=dict( | ||
type="CustomDINOTransformer", | ||
encoder=dict( | ||
type="DetrTransformerEncoder", | ||
num_layers=6, | ||
transformerlayers=dict( | ||
type="BaseTransformerLayer", | ||
attn_cfgs=dict(type="MultiScaleDeformableAttention", embed_dims=256, dropout=0.0), | ||
feedforward_channels=2048, | ||
ffn_dropout=0.0, | ||
operation_order=("self_attn", "norm", "ffn", "norm"), | ||
), | ||
), | ||
decoder=dict( | ||
type="DINOTransformerDecoder", | ||
num_layers=6, | ||
return_intermediate=True, | ||
transformerlayers=dict( | ||
type="DetrTransformerDecoderLayer", | ||
attn_cfgs=[ | ||
dict(type="MultiheadAttention", embed_dims=256, num_heads=8, dropout=0.0), | ||
dict(type="MultiScaleDeformableAttention", embed_dims=256, dropout=0.0), | ||
], | ||
feedforward_channels=2048, | ||
ffn_dropout=0.0, | ||
operation_order=("self_attn", "norm", "cross_attn", "norm", "ffn", "norm"), | ||
), | ||
), | ||
), | ||
positional_encoding=dict( | ||
type="SinePositionalEncoding", num_feats=128, normalize=True, offset=0.0, temperature=20 | ||
), | ||
loss_cls=dict(type="FocalLoss", use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), | ||
loss_bbox=dict(type="L1Loss", loss_weight=5.0), | ||
loss_iou=dict(type="GIoULoss", loss_weight=2.0), | ||
dn_cfg=dict( | ||
label_noise_scale=0.5, | ||
box_noise_scale=1.0, # 0.4 for DN-DETR | ||
group_cfg=dict(dynamic=True, num_groups=None, num_dn_queries=100), | ||
), | ||
), | ||
) | ||
self.bbox_head = build_detector(cfg) | ||
|
||
assigner_cfg = ConfigDict( | ||
type="HungarianAssigner", | ||
cls_cost=dict(type="FocalLossCost", weight=1.0), | ||
reg_cost=dict(type="BBoxL1Cost", weight=5.0, box_format="xywh"), | ||
iou_cost=dict(type="IoUCost", iou_mode="giou", weight=2.0), | ||
) | ||
self.bbox_head.assigner = build_assigner(assigner_cfg) | ||
|
||
test_cfg = dict(max_per_img=300) | ||
self.bbox_head.test_cfg = test_cfg | ||
|
||
@e2e_pytest_unit | ||
def test_forward_train(self): | ||
inputs = [ | ||
torch.zeros([2, 256, 92, 95]), | ||
torch.zeros([2, 256, 46, 48]), | ||
torch.zeros([2, 256, 23, 24]), | ||
torch.zeros([2, 256, 12, 12]), | ||
] | ||
gt_bboxes = [ | ||
torch.Tensor( | ||
[ | ||
[432.2500, 514.2661, 632.6323, 638.8889], | ||
[361.2484, 294.9931, 558.4751, 466.9410], | ||
[616.8542, 201.9204, 752.5462, 328.1207], | ||
[591.6091, 386.4883, 733.6124, 571.0562], | ||
[728.8790, 255.5556, 760.0000, 408.5734], | ||
[713.1008, 397.5309, 760.0000, 541.0837], | ||
[246.0680, 354.9383, 427.5165, 498.4911], | ||
[113.5316, 361.2483, 309.1805, 517.4211], | ||
[457.4950, 654.6639, 646.8326, 736.0000], | ||
[132.4654, 631.0014, 187.6889, 684.6365], | ||
[217.6673, 694.1015, 298.1358, 736.0000], | ||
[0.0000, 583.6763, 56.7303, 672.0164], | ||
[86.7088, 675.1714, 168.7551, 736.0000], | ||
[173.4885, 93.0727, 253.9570, 151.4403], | ||
[738.3458, 119.8903, 760.0000, 164.0603], | ||
[683.1224, 522.1536, 760.0000, 736.0000], | ||
] | ||
), | ||
torch.Tensor( | ||
[ | ||
[442.0, 279.0, 544.0, 377.0], | ||
[386.0, 1.0, 497.0, 108.0], | ||
[288.0, 1.0, 399.0, 84.0], | ||
[154.0, 1.0, 268.0, 77.0], | ||
[530.0, 163.0, 625.0, 248.0], | ||
[179.0, 298.0, 278.0, 398.0], | ||
[275.0, 320.0, 374.0, 420.0], | ||
[525.0, 394.0, 613.0, 480.0], | ||
[332.0, 160.0, 463.0, 286.0], | ||
[210.0, 395.0, 308.0, 480.0], | ||
[141.0, 395.0, 239.0, 480.0], | ||
[106.0, 225.0, 204.0, 310.0], | ||
[12.0, 1.0, 148.0, 70.0], | ||
[165.0, 79.0, 396.0, 247.0], | ||
[483.0, 13.0, 518.0, 52.0], | ||
], | ||
), | ||
] | ||
gt_labels = [ | ||
torch.Tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 2]).long(), | ||
torch.Tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0]).long(), | ||
] | ||
img_metas = [ | ||
{ | ||
"flip_direction": "horizontal", | ||
"img_shape": (736, 760, 3), | ||
"ori_shape": (480, 640, 3), | ||
"img_norm_cfg": { | ||
"mean": np.array([123.675, 116.28, 103.53], dtype=np.float32), | ||
"std": np.array([58.395, 57.12, 57.375], dtype=np.float32), | ||
"to_rgb": False, | ||
}, | ||
"scale_factor": np.array([1.5139443, 1.5144033, 1.5139443, 1.5144033], dtype=np.float32), | ||
"flip": True, | ||
"pad_shape": (736, 760, 3), | ||
"batch_input_shape": (736, 760), | ||
}, | ||
{ | ||
"flip_direction": "horizontal", | ||
"img_shape": (480, 640, 3), | ||
"ori_shape": (480, 640, 3), | ||
"img_norm_cfg": { | ||
"mean": np.array([123.675, 116.28, 103.53], dtype=np.float32), | ||
"std": np.array([58.395, 57.12, 57.375], dtype=np.float32), | ||
"to_rgb": False, | ||
}, | ||
"scale_factor": np.array([1.0, 1.0, 1.0, 1.0], dtype=np.float32), | ||
"flip": True, | ||
"pad_shape": (480, 640, 3), | ||
"batch_input_shape": (736, 760), | ||
}, | ||
] | ||
losses = self.bbox_head.forward_train(inputs, img_metas, gt_bboxes, gt_labels) | ||
assert len(losses) == 39 | ||
|
||
@e2e_pytest_unit | ||
def test_simple_test_bboxes(self): | ||
feats = [ | ||
torch.zeros([2, 256, 100, 134]), | ||
torch.zeros([2, 256, 50, 67]), | ||
torch.zeros([2, 256, 25, 34]), | ||
torch.zeros([2, 256, 13, 17]), | ||
] | ||
img_metas = [ | ||
{ | ||
"ori_shape": (480, 640, 3), | ||
"img_shape": (800, 1067, 3), | ||
"pad_shape": (800, 1067, 3), | ||
"scale_factor": np.array([1.6671875, 1.6666666, 1.6671875, 1.6666666], dtype=np.float32), | ||
"flip": False, | ||
"flip_direction": None, | ||
"img_norm_cfg": { | ||
"mean": np.array([123.675, 116.28, 103.53], dtype=np.float32), | ||
"std": np.array([58.395, 57.12, 57.375], dtype=np.float32), | ||
"to_rgb": False, | ||
}, | ||
"batch_input_shape": (800, 1067), | ||
}, | ||
{ | ||
"ori_shape": (480, 640, 3), | ||
"img_shape": (800, 1067, 3), | ||
"pad_shape": (800, 1067, 3), | ||
"scale_factor": np.array([1.6671875, 1.6666666, 1.6671875, 1.6666666], dtype=np.float32), | ||
"flip": False, | ||
"flip_direction": None, | ||
"img_norm_cfg": { | ||
"mean": np.array([123.675, 116.28, 103.53], dtype=np.float32), | ||
"std": np.array([58.395, 57.12, 57.375], dtype=np.float32), | ||
"to_rgb": False, | ||
}, | ||
"batch_input_shape": (800, 1067), | ||
}, | ||
] | ||
self.bbox_head.eval() | ||
results = self.bbox_head.simple_test_bboxes(feats, img_metas) | ||
assert len(results) == 2 | ||
assert results[0][0].shape == torch.Size([300, 5]) | ||
assert results[0][1].shape == torch.Size([300]) |