Skip to content

Commit

Permalink
add augmentation detail page to docs (#3533)
Browse files Browse the repository at this point in the history
  • Loading branch information
yunchu authored May 23, 2024
1 parent cc1fedd commit 6b8eccb
Show file tree
Hide file tree
Showing 6 changed files with 75 additions and 4 deletions.
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Adaptive Training
==================
=================

Adaptive-training focuses to adjust the number of iterations or interval for the validation to achieve the fast training.
In the small data regime, we don't need to validate the model at every epoch since there are a few iterations at a single epoch.
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
Augmentations per model
=======================

Following table shows details of augmentations that used for each model.

+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+
| Task | Model | Train | Val | Test |
+=============================+===========================+=====================================================================================+=============================================+=============================================+
|| Multi Class Classification || Efficientnet-B0 || - RandomResizedCrop (size=224) || - Resize (size=224) || - Resize (size=224) |
|| Multi Label Classification || Efficientnet-V2-S || - RandomFlip (flip_prob=0.5, direction="horizontal") || - Normalize || - Normalize |
|| H-Label Classification || MV3-Large || - Normalize || || |
|| || DeiT || || || |
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+
|| Detection || Yolox_l || - Mosaic (img_scale=640, pad_val=114.0) || - MultiScaleFlipAug (img_scale=(640, 640)) || - MultiScaleFlipAug (img_scale=(640, 640)) |
|| || Yolox_s || - RandomAffine || - Resize || - Resize |
|| || || - MixUp (img_scale=640, ratio_range=(0.8, 1.6), pad_val=114.0) || - RandomFlip (flip_prob=0.5) || - RandomFlip (flip_prob=0.5) |
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+
|| || Yolox_x || - YOLOXHSVRandomAug || - Pad (size_divisor=32) || - Pad (size_divisor=32) |
|| || || - RandomFlip (flip_prob=0.5) || - Normalize || - Normalize |
|| || || - Resize (img_scale=640) || || |
|| || || - Pad || || |
|| || || - Normalize || || |
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+
|| || Yolox_tiny || - Mosaic (img_scale=640, pad_val=114.0) || - Resize (img_scale=(416, 416)) || - MultiScaleFlipAug (img_scale=(416, 416)) |
|| || || - RandomAffine || - MultiScaleFlipAug (img_scale=(416, 416)) || - Resize |
|| || || - PhotoMetricDistortion || - RandomFlip || - RandomFlip |
|| || || - RandomFlip (flip_prob=0.5) || - Pad || - Pad |
|| || || - Resize (img_scale=640) || - Normalize || - Normalize |
|| || || - Pad || || |
|| || || - Normalize || || |
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+
|| || Mobilenetv2_atss || - MinIoURandomCrop || - Resize (img_scale=(992, 736)) || - Resize (img_scale=(992, 736)) |
|| || Resnext101_atss || - Resize (img_scale=[(992, 736), (896, 736), (1088, 736), (992, 672), (992, 800)]) || - MultiScaleFlipAug (img_scale=(992, 736)) || - MultiScaleFlipAug (img_scale=(992, 736)) |
|| || || - RandomFlip (flip_prob=0.5) || - RandomFlip || - RandomFlip |
|| || || - Normalize || - Normalize || - Normalize |
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+
|| || Mobilenetv2_ssd || - PhotoMetricDistortion || - Resize (img_scale=(864, 864)) || - MultiScaleFlipAug (img_scale=(864, 864)) |
|| || || - MinIoURandomCrop || - MultiScaleFlipAug (img_scale=(864, 864)) || - Resize |
|| || || - Resize (img_scale=(864, 864)) || - Normalize || - Normalize |
|| || || - Normalize || || |
|| || || - RandomFlip (flip_prob=0.5) || || |
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+
|| || Resnet50_Detr || - RandomFlip (flip_prob=0.5) || - MultiScaleFlipAug (img_scale=(1333, 800) || - MultiScaleFlipAug (img_scale=(1333, 800) |
|| || Resnet50_dino || - AutoAugment || - Resize || - Resize |
|| || || - Resize || - RandomFlip || - RandomFlip |
|| || || - RandomCrop || - Normalize || - Normalize |
|| || || - Resize || - Pad (size_divisor=32) || - Pad (size_divisor=32) |
|| || || - Normalize || || |
|| || || - Pad (size_divisor=1) || || |
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+
|| Instance-segmentation || Convnext_maskrcnn || - Resize (img_scale=1024) || - Resize (img_scale=1024) || - MultiScaleFlipAug (img_scale=1024) |
|| || Efficientnetb2b_maskrcnn || - RandomFlip (flip_prob=0.5) || - MultiScaleFlipAug || - Resize |
|| || Resnet50_maskrcnn || - Normalize || - RandomFlip (flip_prob=0.5) || - RandomFlip (flip_prob=0.5) |
|| || || - Pad (size_divisor=32) || - Normalize || - Normalize |
|| || || || - Pad (size_divisor=32) || - Pad (size_divisor=32) |
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+
|| || Maskrcnn_swin_t || - Resize (img_scale=1344) || - Resize (img_scale=1344) || - Resize (img_scale=1344) |
|| || || - RandomFlip (flip_prob=0.5) || - MultiScaleFlipAug || - MultiScaleFlipAug |
|| || || - Normalize || - RandomFlip (flip_prob=0.5) || - RandomFlip (flip_prob=0.5) |
|| || || - Pad (size_divisor=32) || - Normalize || - Normalize |
|| || || - Pad (size_divisor=32) || - Pad (size_divisor=32) || |
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+
|| Segmentation || Segnext_b || - Resize (img_scale=544) || - Resize (img_scale=544) || - Resize (img_scale=544) |
|| || Segnext_s || - RandomCrop (crop_size=512, cat_max_ratio=0.75) || - MultiScaleFlipAug || - MultiScaleFlipAug |
|| || Segnext_t || - RandomFlip (flip_prob=0.5, direction="horizontal") || - RandomFlip || - RandomFlip |
|| || Lite_hrnet_18 || - Normalize || - Normalize || - Normalize |
|| || Lite_hrnet_18_mod2 || - Pad (size=512, pad_val=0, seg_pad_val=255) || || |
|| || Lite_hrnet_s_mod2 || || || |
|| || Lite_hrnet_x_mod3 || || || |
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+
Original file line number Diff line number Diff line change
Expand Up @@ -15,3 +15,4 @@ Additional Features
fast_data_loading
tiling
config_input_size
augmentations_per_model
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Visual Prompting (Fine-tuning)
=================
==============================

Visual prompting is a computer vision task that uses a combination of an image and prompts, such as texts, bounding boxes, points, and so on to troubleshoot problems.
Using these useful prompts, the main purpose of this task is to obtain labels from unlabeled datasets, and to use generated label information on particular domains or to develop a new model with the generated information.
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Visual Prompting
============
================

.. toctree::
:maxdepth: 1
Expand Down
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
Visual Prompting (Zero-shot learning)
=================
=====================================

Visual prompting is a computer vision task that uses a combination of an image and prompts, such as texts, bounding boxes, points, and so on to troubleshoot problems.
Using these useful prompts, the main purpose of this task is to obtain labels from unlabeled datasets, and to use generated label information on particular domains or to develop a new model with the generated information.
Expand Down

0 comments on commit 6b8eccb

Please sign in to comment.