-
Notifications
You must be signed in to change notification settings - Fork 443
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add augmentation detail page to docs (#3533)
- Loading branch information
Showing
6 changed files
with
75 additions
and
4 deletions.
There are no files selected for viewing
2 changes: 1 addition & 1 deletion
2
docs/source/guide/explanation/additional_features/adaptive_training.rst
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
70 changes: 70 additions & 0 deletions
70
docs/source/guide/explanation/additional_features/augmentations_per_model.rst
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
Augmentations per model | ||
======================= | ||
|
||
Following table shows details of augmentations that used for each model. | ||
|
||
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+ | ||
| Task | Model | Train | Val | Test | | ||
+=============================+===========================+=====================================================================================+=============================================+=============================================+ | ||
|| Multi Class Classification || Efficientnet-B0 || - RandomResizedCrop (size=224) || - Resize (size=224) || - Resize (size=224) | | ||
|| Multi Label Classification || Efficientnet-V2-S || - RandomFlip (flip_prob=0.5, direction="horizontal") || - Normalize || - Normalize | | ||
|| H-Label Classification || MV3-Large || - Normalize || || | | ||
|| || DeiT || || || | | ||
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+ | ||
|| Detection || Yolox_l || - Mosaic (img_scale=640, pad_val=114.0) || - MultiScaleFlipAug (img_scale=(640, 640)) || - MultiScaleFlipAug (img_scale=(640, 640)) | | ||
|| || Yolox_s || - RandomAffine || - Resize || - Resize | | ||
|| || || - MixUp (img_scale=640, ratio_range=(0.8, 1.6), pad_val=114.0) || - RandomFlip (flip_prob=0.5) || - RandomFlip (flip_prob=0.5) | | ||
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+ | ||
|| || Yolox_x || - YOLOXHSVRandomAug || - Pad (size_divisor=32) || - Pad (size_divisor=32) | | ||
|| || || - RandomFlip (flip_prob=0.5) || - Normalize || - Normalize | | ||
|| || || - Resize (img_scale=640) || || | | ||
|| || || - Pad || || | | ||
|| || || - Normalize || || | | ||
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+ | ||
|| || Yolox_tiny || - Mosaic (img_scale=640, pad_val=114.0) || - Resize (img_scale=(416, 416)) || - MultiScaleFlipAug (img_scale=(416, 416)) | | ||
|| || || - RandomAffine || - MultiScaleFlipAug (img_scale=(416, 416)) || - Resize | | ||
|| || || - PhotoMetricDistortion || - RandomFlip || - RandomFlip | | ||
|| || || - RandomFlip (flip_prob=0.5) || - Pad || - Pad | | ||
|| || || - Resize (img_scale=640) || - Normalize || - Normalize | | ||
|| || || - Pad || || | | ||
|| || || - Normalize || || | | ||
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+ | ||
|| || Mobilenetv2_atss || - MinIoURandomCrop || - Resize (img_scale=(992, 736)) || - Resize (img_scale=(992, 736)) | | ||
|| || Resnext101_atss || - Resize (img_scale=[(992, 736), (896, 736), (1088, 736), (992, 672), (992, 800)]) || - MultiScaleFlipAug (img_scale=(992, 736)) || - MultiScaleFlipAug (img_scale=(992, 736)) | | ||
|| || || - RandomFlip (flip_prob=0.5) || - RandomFlip || - RandomFlip | | ||
|| || || - Normalize || - Normalize || - Normalize | | ||
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+ | ||
|| || Mobilenetv2_ssd || - PhotoMetricDistortion || - Resize (img_scale=(864, 864)) || - MultiScaleFlipAug (img_scale=(864, 864)) | | ||
|| || || - MinIoURandomCrop || - MultiScaleFlipAug (img_scale=(864, 864)) || - Resize | | ||
|| || || - Resize (img_scale=(864, 864)) || - Normalize || - Normalize | | ||
|| || || - Normalize || || | | ||
|| || || - RandomFlip (flip_prob=0.5) || || | | ||
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+ | ||
|| || Resnet50_Detr || - RandomFlip (flip_prob=0.5) || - MultiScaleFlipAug (img_scale=(1333, 800) || - MultiScaleFlipAug (img_scale=(1333, 800) | | ||
|| || Resnet50_dino || - AutoAugment || - Resize || - Resize | | ||
|| || || - Resize || - RandomFlip || - RandomFlip | | ||
|| || || - RandomCrop || - Normalize || - Normalize | | ||
|| || || - Resize || - Pad (size_divisor=32) || - Pad (size_divisor=32) | | ||
|| || || - Normalize || || | | ||
|| || || - Pad (size_divisor=1) || || | | ||
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+ | ||
|| Instance-segmentation || Convnext_maskrcnn || - Resize (img_scale=1024) || - Resize (img_scale=1024) || - MultiScaleFlipAug (img_scale=1024) | | ||
|| || Efficientnetb2b_maskrcnn || - RandomFlip (flip_prob=0.5) || - MultiScaleFlipAug || - Resize | | ||
|| || Resnet50_maskrcnn || - Normalize || - RandomFlip (flip_prob=0.5) || - RandomFlip (flip_prob=0.5) | | ||
|| || || - Pad (size_divisor=32) || - Normalize || - Normalize | | ||
|| || || || - Pad (size_divisor=32) || - Pad (size_divisor=32) | | ||
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+ | ||
|| || Maskrcnn_swin_t || - Resize (img_scale=1344) || - Resize (img_scale=1344) || - Resize (img_scale=1344) | | ||
|| || || - RandomFlip (flip_prob=0.5) || - MultiScaleFlipAug || - MultiScaleFlipAug | | ||
|| || || - Normalize || - RandomFlip (flip_prob=0.5) || - RandomFlip (flip_prob=0.5) | | ||
|| || || - Pad (size_divisor=32) || - Normalize || - Normalize | | ||
|| || || - Pad (size_divisor=32) || - Pad (size_divisor=32) || | | ||
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+ | ||
|| Segmentation || Segnext_b || - Resize (img_scale=544) || - Resize (img_scale=544) || - Resize (img_scale=544) | | ||
|| || Segnext_s || - RandomCrop (crop_size=512, cat_max_ratio=0.75) || - MultiScaleFlipAug || - MultiScaleFlipAug | | ||
|| || Segnext_t || - RandomFlip (flip_prob=0.5, direction="horizontal") || - RandomFlip || - RandomFlip | | ||
|| || Lite_hrnet_18 || - Normalize || - Normalize || - Normalize | | ||
|| || Lite_hrnet_18_mod2 || - Pad (size=512, pad_val=0, seg_pad_val=255) || || | | ||
|| || Lite_hrnet_s_mod2 || || || | | ||
|| || Lite_hrnet_x_mod3 || || || | | ||
+-----------------------------+---------------------------+-------------------------------------------------------------------------------------+---------------------------------------------+---------------------------------------------+ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -15,3 +15,4 @@ Additional Features | |
fast_data_loading | ||
tiling | ||
config_input_size | ||
augmentations_per_model |
2 changes: 1 addition & 1 deletion
2
docs/source/guide/explanation/algorithms/visual_prompting/fine_tuning.rst
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
2 changes: 1 addition & 1 deletion
2
docs/source/guide/explanation/algorithms/visual_prompting/index.rst
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
Visual Prompting | ||
============ | ||
================ | ||
|
||
.. toctree:: | ||
:maxdepth: 1 | ||
|
2 changes: 1 addition & 1 deletion
2
docs/source/guide/explanation/algorithms/visual_prompting/zero_shot.rst
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters