Skip to content

Commit

Permalink
Mergeback 1.5.2 to 1.6.0 (#3214)
Browse files Browse the repository at this point in the history
* Mergeback 1.4.4 to 1.5.0 (#2745)

* Update MAPI version (#2730)

* Update anomaly ov inference task

* Update reqs in exportable code

* Fix one more place of conversion of anomaly map

* Update dependency for exportable code (#2732)

* Fix unsupported dtype in ov graph constant converter

---------

Co-authored-by: Vladislav Sovrasov <[email protected]>

* Mergeback 1.4.0 to 1.5.0 (#2826)

* Update MAPI version (#2730)

* Update dependency for exportable code (#2732)

* Filter invalid polygon shapes (#2795)

---------

Co-authored-by: Vladislav Sovrasov <[email protected]>
Co-authored-by: Eugene Liu <[email protected]>

* Mergeback changes for 1.4.5 to releases/1.5.0 (#2871)

* Update MAPI version (#2730)

* Update anomaly ov inference task

* Fix one more place of conversion of anomaly map

* Update dependency for exportable code (#2732)

* Fix unsupported dtype in ov graph constant converter

* Filter invalid polygon shapes (#2795)

* fix segmentation test

* Update for releases 1.4.5 (#2837)

* 🐞 Bugfix: Set reverse_input_channels to True in OpenVINO models (#2848)

* Set reverse_input_channels to True

* Remove dependency of protobuf (#2851)

* Update release notes and changelog for 1.4.5 (#2853)

---------

Co-authored-by: Vladislav Sovrasov <[email protected]>
Co-authored-by: Eugene Liu <[email protected]>
Co-authored-by: Ashwin Vaidya <[email protected]>

* Update version string to 1.5.1 (#2874)

update version string to 1.5.1

* [Release 1.5] Fix label order for h-cls (#2921)

Fix h-cls label order

* Revert MRCNN resize to state from 1.4 (#2922)

* Update openvino.txt (#2923)

* Remove polygon clipping code (#2926)

* Fix default memcache size to 100MB (#2960)

* Fix default memcache size to 100MB

* Deal with empty annotation of 'No Object' label images

---------
Signed-off-by: Songki Choi <[email protected]>

* Hotfix default memcache size to 100MB (#2990)

* Fix default memcache size to 100MB

* Fix memcache size max limit to 10GB

* Update CHANGELOG.md

* Hotfix: fix wrong domain in tiling rotated detection (#3141)

* domain=rotated_detection in tile_pipeline

* update tile pipeline

* Update otx version to 1.5.2 (#3174)

* update otx version to 1.5.2

* Update CHANGELOG.md

---------

Co-authored-by: Vladislav Sovrasov <[email protected]>
Co-authored-by: Eugene Liu <[email protected]>
Co-authored-by: Ashwin Vaidya <[email protected]>
Co-authored-by: Galina Zalesskaya <[email protected]>
Co-authored-by: Emily Chun <[email protected]>
Co-authored-by: Songki Choi <[email protected]>
  • Loading branch information
7 people authored Mar 29, 2024
1 parent 48f84b1 commit 620dfd1
Show file tree
Hide file tree
Showing 21 changed files with 286 additions and 51 deletions.
29 changes: 27 additions & 2 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,8 @@ All notable changes to this project will be documented in this file.

## \[unreleased\]

## \[v1.6.0\]

### New features

- Add zero-shot visual prompting (<https://github.com/openvinotoolkit/training_extensions/pull/2616>, <https://github.com/openvinotoolkit/training_extensions/pull/2706>, <https://github.com/openvinotoolkit/training_extensions/pull/2753>)
Expand All @@ -13,6 +15,18 @@ All notable changes to this project will be documented in this file.

- Upgrade OpenVINO to 2023.3 (<https://github.com/openvinotoolkit/training_extensions/pull/2879>)
- Automate performance benchmark (<https://github.com/openvinotoolkit/training_extensions/pull/2742>)
- Bump ONNX version to 1.16.0 to resolve CVE-2022-25882 (<https://github.com/openvinotoolkit/training_extensions/pull/3205>)

## \[v1.5.2\]

> **NOTES**
>
> OpenVINO™ Training Extension v1.5.2 does not include the latest functional and security updates. OpenVINO™ Training Extension v2.0.0 is targeted to be released in April 2024 and will include additional functional and security updates. Customers should update to the latest version as it becomes available.
### Bug fixes

- Remove polygon clipping code (<https://github.com/openvinotoolkit/training_extensions/pull/2926>)
- Hotfix default memcache size to 100MB (<https://github.com/openvinotoolkit/training_extensions/pull/2990>)

## \[v1.5.0\]

Expand Down Expand Up @@ -49,6 +63,17 @@ All notable changes to this project will be documented in this file.
- OpenVINO(==2023.0) IR inference is not working well on 2-stage models (e.g. Mask-RCNN) exported from torch>=1.13.1
- NNCF QAT optimization is disabled for MaskRCNN models due to CUDA runtime error in ROIAlign kernel on torch==2.0.1

## \[v1.4.5\]

### Bug fixes

- Filter invalid polygon shapes (<https://github.com/openvinotoolkit/training_extensions/pull/2795>)
- 🐞 Bugfix: Set reverse*input_channels to True in OpenVINO models (<https://github.com/openvinotoolkit/training_extensions/pull/2848>*

### Misc

- Remove dependency of protobuf to omit vulnerability issue (<https://github.com/openvinotoolkit/training_extensions/pull/2851>)

## \[v1.4.4\]

### Enhancements
Expand Down Expand Up @@ -324,7 +349,7 @@ All notable changes to this project will be documented in this file.

## \[v1.0.0\]

> _**NOTES**_
> **NOTES**
>
> OpenVINO™ Training Extensions which version 1.0.0 has been updated to include functional and security updates. Users should update to the latest version.
Expand Down Expand Up @@ -352,7 +377,7 @@ All notable changes to this project will be documented in this file.

## \[v0.5.0\]

> _**NOTES**_
> **NOTES**
>
> OpenVINO Training Extension which version is equal or older then v0.5.0 does not include the latest functional and security updates. OTE Version 1.0.0 is targeted to be released in February 2023 and will include additional functional and security updates. Customers should update to the latest version as it becomes available.
Expand Down
13 changes: 13 additions & 0 deletions docs/source/guide/release_notes/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,13 @@ Releases
.. toctree::
:maxdepth: 1

v1.5.2 (1Q24)
-------------

- Remove polygon clipping code
- Hotfix default memcache size to 100MB


v1.5.0 (4Q23)
-------------

Expand All @@ -25,6 +32,12 @@ v1.5.0 (4Q23)
- Support torch==2.0.1
- Set "Auto" as default input size mode

v1.4.5 (1Q24)
-------------

- Filter invalid polygon shapes
- Fix a bug to set reverse_input_channels for OpenVINO models
- Remove unreferenced dependency of protobuf

v1.4.4 (4Q23)
-------------
Expand Down
1 change: 0 additions & 1 deletion requirements/base.txt
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@
# Base Algo Requirements. #
natsort==8.1.*
prettytable==3.9.*
protobuf==3.20.*
pyyaml
datumaro==1.6.0rc1
psutil==5.9.*
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -290,7 +290,7 @@ algo_backend:
description: Size of memory pool for caching decoded data to load data faster (bytes).
editable: true
header: Size of memory pool
max_value: 9223372036854775807
max_value: 10000000000
min_value: 0
type: INTEGER
ui_rules:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -290,7 +290,7 @@ algo_backend:
description: Size of memory pool for caching decoded data to load data faster (bytes).
editable: true
header: Size of memory pool
max_value: 9223372036854775807
max_value: 10000000000
min_value: 0
type: INTEGER
ui_rules:
Expand Down
2 changes: 1 addition & 1 deletion src/otx/algorithms/anomaly/tasks/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -357,7 +357,7 @@ def _add_metadata_to_ir(self, model_file: str, export_type: ExportType) -> None:
if "min" in metadata and "max" in metadata:
extra_model_data[("model_info", "normalization_scale")] = metadata["max"] - metadata["min"]

extra_model_data[("model_info", "reverse_input_channels")] = False
extra_model_data[("model_info", "reverse_input_channels")] = True # convert BGR to RGB
extra_model_data[("model_info", "model_type")] = "AnomalyDetection"

labels = []
Expand Down
2 changes: 1 addition & 1 deletion src/otx/algorithms/anomaly/tasks/openvino.py
Original file line number Diff line number Diff line change
Expand Up @@ -453,7 +453,7 @@ def _metadata_in_ir_format(self) -> Dict[Tuple[str, str], Union[str, int, float,
if "min" in metadata and "max" in metadata:
extra_model_data[("model_info", "normalization_scale")] = metadata["max"] - metadata["min"]

extra_model_data[("model_info", "reverse_input_channels")] = False
extra_model_data[("model_info", "reverse_input_channels")] = True # convert BGR to RGB
extra_model_data[("model_info", "model_type")] = "AnomalyDetection"
extra_model_data[("model_info", "labels")] = "Normal Anomaly"
return extra_model_data
Expand Down
6 changes: 5 additions & 1 deletion src/otx/algorithms/classification/adapters/openvino/task.py
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,11 @@ def __init__(

self.model = Model.create_model(model_adapter, "Classification", self.configuration, preload=True)

self.converter = ClassificationToAnnotationConverter(self.label_schema)
if self.model.hierarchical:
hierarchical_cls_heads_info = self.model.hierarchical_info["cls_heads_info"]
else:
hierarchical_cls_heads_info = None
self.converter = ClassificationToAnnotationConverter(self.label_schema, hierarchical_cls_heads_info)
self.callback_exceptions: List[Exception] = []
self.model.inference_adapter.set_callback(self._async_callback)

Expand Down
4 changes: 2 additions & 2 deletions src/otx/algorithms/classification/configs/configuration.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -441,11 +441,11 @@ algo_backend:
warning: null
mem_cache_size:
affects_outcome_of: TRAINING
default_value: 1000000000
default_value: 100000000
description: Size of memory pool for caching decoded data to load data faster (bytes).
editable: true
header: Size of memory pool
max_value: 9223372036854775807
max_value: 10000000000
min_value: 0
type: INTEGER
ui_rules:
Expand Down
39 changes: 19 additions & 20 deletions src/otx/algorithms/classification/utils/cls_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,9 @@

import json
from operator import itemgetter
from typing import Any, Dict
from typing import Any, Dict, List

from otx.api.entities.label import LabelEntity
from otx.api.entities.label_schema import LabelSchemaEntity
from otx.api.serialization.label_mapper import LabelSchemaMapper

Expand Down Expand Up @@ -51,8 +52,8 @@ def get_multihead_class_info(label_schema: LabelSchemaEntity): # pylint: disabl
for j, group in enumerate(single_label_groups):
class_to_idx[group[0]] = (len(exclusive_groups), j)

all_labels = label_schema.get_labels(include_empty=False)
label_to_idx = {lbl.name: i for i, lbl in enumerate(all_labels)}
# Idx of label corresponds to model output
label_to_idx = {lbl: i for i, lbl in enumerate(class_to_idx.keys())}

mixed_cls_heads_info = {
"num_multiclass_heads": len(exclusive_groups),
Expand Down Expand Up @@ -104,9 +105,13 @@ def get_cls_model_api_configuration(label_schema: LabelSchemaEntity, inference_c
mapi_config[("model_info", "hierarchical")] = str(inference_config["hierarchical"])
mapi_config[("model_info", "output_raw_scores")] = str(True)

label_entities = label_schema.get_labels(include_empty=False)
if inference_config["hierarchical"]:
label_entities = get_hierarchical_label_list(inference_config["multihead_class_info"], label_entities)

all_labels = ""
all_label_ids = ""
for lbl in label_schema.get_labels(include_empty=False):
for lbl in label_entities:
all_labels += lbl.name.replace(" ", "_") + " "
all_label_ids += f"{lbl.id_} "

Expand All @@ -123,22 +128,16 @@ def get_cls_model_api_configuration(label_schema: LabelSchemaEntity, inference_c
return mapi_config


def get_hierarchical_label_list(hierarchical_info, labels):
def get_hierarchical_label_list(hierarchical_cls_heads_info: Dict, labels: List) -> List[LabelEntity]:
"""Return hierarchical labels list which is adjusted to model outputs classes."""

# Create the list of Label Entities (took from "labels")
# corresponding to names and order in "label_to_idx"
label_to_idx = hierarchical_cls_heads_info["label_to_idx"]
hierarchical_labels = []
for head_idx in range(hierarchical_info["num_multiclass_heads"]):
logits_begin, logits_end = hierarchical_info["head_idx_to_logits_range"][str(head_idx)]
for logit in range(0, logits_end - logits_begin):
label_str = hierarchical_info["all_groups"][head_idx][logit]
label_idx = hierarchical_info["label_to_idx"][label_str]
hierarchical_labels.append(labels[label_idx])

if hierarchical_info["num_multilabel_classes"]:
logits_begin = hierarchical_info["num_single_label_classes"]
logits_end = len(labels)
for logit_idx, logit in enumerate(range(0, logits_end - logits_begin)):
label_str_idx = hierarchical_info["num_multiclass_heads"] + logit_idx
label_str = hierarchical_info["all_groups"][label_str_idx][0]
label_idx = hierarchical_info["label_to_idx"][label_str]
hierarchical_labels.append(labels[label_idx])
for label_str, _ in label_to_idx.items():
for label_entity in labels:
if label_entity.name == label_str:
hierarchical_labels.append(label_entity)
break
return hierarchical_labels
Original file line number Diff line number Diff line change
Expand Up @@ -204,6 +204,8 @@ def __call__(self, results: Dict[str, Any]) -> Dict[str, Any]:
return cached_results
results = self._load_img(results)
results = self._load_ann_if_any(results)
if results is None:
return None
results.pop("dataset_item", None) # Prevent deepcopy or caching
results = self._resize_img_ann_if_any(results)
self._save_cache(results)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -371,11 +371,11 @@ algo_backend:
warning: null
mem_cache_size:
affects_outcome_of: TRAINING
default_value: 1000000000
default_value: 100000000
description: Size of memory pool for caching decoded data to load data faster (bytes).
editable: true
header: Size of memory pool
max_value: 9223372036854775807
max_value: 10000000000
min_value: 0
type: INTEGER
ui_rules:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -371,11 +371,11 @@ algo_backend:
warning: null
mem_cache_size:
affects_outcome_of: TRAINING
default_value: 1000000000
default_value: 100000000
description: Size of memory pool for caching decoded data to load data faster (bytes).
editable: true
header: Size of memory pool
max_value: 9223372036854775807
max_value: 10000000000
min_value: 0
type: INTEGER
ui_rules:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -356,11 +356,11 @@ algo_backend:
warning: null
mem_cache_size:
affects_outcome_of: TRAINING
default_value: 1000000000
default_value: 100000000
description: Size of memory pool for caching decoded data to load data faster (bytes).
editable: true
header: Size of memory pool
max_value: 9223372036854775807
max_value: 10000000000
min_value: 0
type: INTEGER
ui_rules:
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,95 @@
"""Tiling Pipeline of EfficientNetB2B model for Instance-Seg Task."""
"""Tiling Pipeline of EfficientNetB2B model."""

# Copyright (C) 2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

# pylint: disable=invalid-name

_base_ = ["../../base/data/tiling/efficientnet_iseg_tile_pipeline.py"]
img_size = (512, 512)

tile_cfg = dict(
tile_size=400, min_area_ratio=0.9, overlap_ratio=0.2, iou_threshold=0.45, max_per_img=1500, filter_empty_gt=True
)

img_norm_cfg = dict(mean=(103.53, 116.28, 123.675), std=(1.0, 1.0, 1.0), to_rgb=True)

train_pipeline = [
dict(type="Resize", img_scale=img_size, keep_ratio=False),
dict(type="RandomFlip", flip_ratio=0.5),
dict(type="Normalize", **img_norm_cfg),
dict(type="Pad", size_divisor=32),
dict(type="DefaultFormatBundle"),
dict(
type="Collect",
keys=["img", "gt_bboxes", "gt_labels", "gt_masks"],
meta_keys=[
"filename",
"ori_filename",
"ori_shape",
"img_shape",
"pad_shape",
"scale_factor",
"flip",
"flip_direction",
"img_norm_cfg",
],
),
]

test_pipeline = [
dict(
type="MultiScaleFlipAug",
img_scale=img_size,
flip=False,
transforms=[
dict(type="Resize", keep_ratio=False),
dict(type="RandomFlip"),
dict(type="Normalize", **img_norm_cfg),
dict(type="Pad", size_divisor=32),
dict(type="ImageToTensor", keys=["img"]),
dict(type="Collect", keys=["img"]),
],
)
]

__dataset_type = "OTXDetDataset"

train_dataset = dict(
type="ImageTilingDataset",
dataset=dict(
type=__dataset_type,
pipeline=[
dict(type="LoadImageFromOTXDataset", enable_memcache=True),
dict(type="LoadAnnotationFromOTXDataset", domain="rotated_detection", with_bbox=True, with_mask=True),
],
),
pipeline=train_pipeline,
**tile_cfg
)

val_dataset = dict(
type="ImageTilingDataset",
dataset=dict(
type=__dataset_type,
pipeline=[
dict(type="LoadImageFromOTXDataset", enable_memcache=True),
dict(type="LoadAnnotationFromOTXDataset", domain="rotated_detection", with_bbox=True, with_mask=True),
],
),
pipeline=test_pipeline,
**tile_cfg
)

test_dataset = dict(
type="ImageTilingDataset",
dataset=dict(
type=__dataset_type,
test_mode=True,
pipeline=[dict(type="LoadImageFromOTXDataset")],
),
pipeline=test_pipeline,
**tile_cfg
)


data = dict(train=train_dataset, val=val_dataset, test=test_dataset)
Loading

0 comments on commit 620dfd1

Please sign in to comment.