Skip to content

Commit

Permalink
Merge pull request #97 from openvinotoolkit/dev
Browse files Browse the repository at this point in the history
HiRes Latent upscaler support
  • Loading branch information
likholat authored May 6, 2024
2 parents 4400629 + 522cca2 commit e5a634d
Showing 1 changed file with 54 additions and 8 deletions.
62 changes: 54 additions & 8 deletions scripts/openvino_accelerate.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
ControlNetModel,
StableDiffusionLatentUpscalePipeline,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
Expand Down Expand Up @@ -535,6 +536,23 @@ class NoWatermark:
def apply_watermark(self, img):
return img


def get_diffusers_upscaler(upscaler: str):
torch._dynamo.reset()
openvino_clear_caches()
model_name = "stabilityai/sd-x2-latent-upscaler"
print("OpenVINO Script: loading upscaling model: " + model_name)
sd_model = StableDiffusionLatentUpscalePipeline.from_pretrained(model_name, torch_dtype=torch.float32)
sd_model.safety_checker = None
sd_model.cond_stage_key = functools.partial(cond_stage_key, shared.sd_model)
sd_model.unet = torch.compile(sd_model.unet, backend="openvino")
sd_model.vae.decode = torch.compile(sd_model.vae.decode, backend="openvino")
shared.sd_diffusers_model = sd_model
del sd_model

return shared.sd_diffusers_model


def get_diffusers_sd_model(model_config, vae_ckpt, sampler_name, enable_caching, openvino_device, mode, is_xl_ckpt, refiner_ckpt, refiner_frac):
if (model_state.recompile == 1):
model_state.partition_id = 0
Expand Down Expand Up @@ -770,7 +788,8 @@ def init_new(self, all_prompts, all_seeds, all_subseeds):
else:
raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")

def process_images_openvino(p: StableDiffusionProcessing, model_config, vae_ckpt, sampler_name, enable_caching, openvino_device, mode, is_xl_ckpt, refiner_ckpt, refiner_frac) -> Processed:
def process_images_openvino(p: StableDiffusionProcessing, model_config, vae_ckpt, sampler_name, enable_caching, override_hires, upscaler, hires_steps, d_strength, openvino_device, mode, is_xl_ckpt, refiner_ckpt, refiner_frac) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""

"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
if (mode == 0 and p.enable_hr):
Expand Down Expand Up @@ -1092,6 +1111,23 @@ def callback(iter, t, latents):

devices.torch_gc()

# Hight resolutuon mode
if override_hires:
if upscaler == "Latent":
model_state.mode = -1
shared.sd_diffusers_model = get_diffusers_upscaler(upscaler)
img_idx = slice(len(output_images)) if p.batch_size == 1 else slice(1, len(output_images))
output_images[img_idx] = shared.sd_diffusers_model(
image=output_images[img_idx],
prompt=p.prompts,
negative_prompt=p.negative_prompts,
num_inference_steps=hires_steps,
guidance_scale=p.cfg_scale,
generator=generator,
callback = callback,
callback_steps = 1,
).images

res = Processed(
p,
images_list=output_images,
Expand All @@ -1102,7 +1138,8 @@ def callback(iter, t, latents):
index_of_first_image=index_of_first_image,
infotexts=infotexts,
)

if override_hires:
res.info = res.info + f", Hires upscaler: {upscaler}, Denoising strength: {d_strength}"
res.info = res.info + ", Warm up time: " + str(round(warmup_duration, 2)) + " secs "

if (generation_rate >= 1.0):
Expand All @@ -1116,6 +1153,9 @@ def callback(iter, t, latents):

return res

def on_change(mode):
return gr.update(visible=mode)

class Script(scripts.Script):
def title(self):
return "Accelerate with OpenVINO"
Expand Down Expand Up @@ -1170,6 +1210,12 @@ def get_refiner_list():
override_sampler = gr.Checkbox(label="Override the sampling selection from the main UI (Recommended as only below sampling methods have been validated for OpenVINO)", value=True)
sampler_name = gr.Radio(label="Select a sampling method", choices=["Euler a", "Euler", "LMS", "Heun", "DPM++ 2M", "LMS Karras", "DPM++ 2M Karras", "DDIM", "PLMS"], value="Euler a")
enable_caching = gr.Checkbox(label="Cache the compiled models on disk for faster model load in subsequent launches (Recommended)", value=True, elem_id=self.elem_id("enable_caching"))
override_hires = gr.Checkbox(label="Override the Hires.fix selection from the main UI (Recommended as only below upscalers have been validated for OpenVINO)", value=False, visible=self.is_txt2img)
with gr.Group(visible=False) as hires:
with gr.Row():
upscaler = gr.Dropdown(label="Upscaler", choices=["Latent"], value="Latent")
hires_steps = gr.Slider(1, 150, value=10, step=1, label="Steps")
d_strength = gr.Slider(0, 1, value=0.5, step=0.01, label="Strength")
warmup_status = gr.Textbox(label="Device", interactive=False, visible=False)
vae_status = gr.Textbox(label="VAE", interactive=False, visible=False)
gr.Markdown(
Expand All @@ -1184,6 +1230,8 @@ def get_refiner_list():
So it's normal for the first inference after a settings change to be slower, while subsequent inferences use the optimized compiled model and run faster.
""")

override_hires.change(on_change, override_hires, hires)

def device_change(choice):
if (model_state.device == choice):
return gr.update(value="Device selected is " + choice, visible=True)
Expand All @@ -1206,9 +1254,9 @@ def refiner_ckpt_change(choice):
else:
model_state.refiner_ckpt = choice
refiner_ckpt.change(refiner_ckpt_change, refiner_ckpt)
return [model_config, vae_ckpt, openvino_device, override_sampler, sampler_name, enable_caching, is_xl_ckpt, refiner_ckpt, refiner_frac]
return [model_config, vae_ckpt, openvino_device, override_sampler, sampler_name, enable_caching, override_hires, upscaler, hires_steps, d_strength, is_xl_ckpt, refiner_ckpt, refiner_frac]

def run(self, p, model_config, vae_ckpt, openvino_device, override_sampler, sampler_name, enable_caching, is_xl_ckpt, refiner_ckpt, refiner_frac):
def run(self, p, model_config, vae_ckpt, openvino_device, override_sampler, sampler_name, enable_caching, override_hires, upscaler, hires_steps, d_strength, is_xl_ckpt, refiner_ckpt, refiner_frac):
os.environ["OPENVINO_TORCH_BACKEND_DEVICE"] = str(openvino_device)

if enable_caching:
Expand All @@ -1225,14 +1273,12 @@ def run(self, p, model_config, vae_ckpt, openvino_device, override_sampler, samp
mode = 0
if self.is_txt2img:
mode = 0
processed = process_images_openvino(p, model_config, vae_ckpt, p.sampler_name, enable_caching, openvino_device, mode, is_xl_ckpt, refiner_ckpt, refiner_frac)
processed = process_images_openvino(p, model_config, vae_ckpt, p.sampler_name, enable_caching, override_hires, upscaler, hires_steps, d_strength, openvino_device, mode, is_xl_ckpt, refiner_ckpt, refiner_frac)
else:
if p.image_mask is None:
mode = 1
else:
mode = 2
p.init = functools.partial(init_new, p)
processed = process_images_openvino(p, model_config, vae_ckpt, p.sampler_name, enable_caching, openvino_device, mode, is_xl_ckpt, refiner_ckpt, refiner_frac)
processed = process_images_openvino(p, model_config, vae_ckpt, p.sampler_name, enable_caching, override_hires, upscaler, hires_steps, d_strength, openvino_device, mode, is_xl_ckpt, refiner_ckpt, refiner_frac)
return processed


0 comments on commit e5a634d

Please sign in to comment.