Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RandomUniform reference implementation. #7012

Merged
merged 30 commits into from
Sep 6, 2021
Merged
Show file tree
Hide file tree
Changes from 10 commits
Commits
Show all changes
30 commits
Select commit Hold shift + click to select a range
faa055f
Added RandomUniform reference implementation.
popovaan Aug 10, 2021
ecd82fc
Corrected comments.
popovaan Aug 10, 2021
0a4844d
Small correction.
popovaan Aug 10, 2021
601c64d
Merge branch 'master' into random_uniform_reference
popovaan Aug 16, 2021
db0fd64
Code style correction.
popovaan Aug 16, 2021
cf8d959
Merge remote-tracking branch 'upstream/master' into random_uniform_re…
popovaan Aug 16, 2021
1ac3c16
Added has_evaluate() method.
popovaan Aug 17, 2021
6ac585f
Added comments, added names to consts.
popovaan Aug 17, 2021
49401d8
Small fix.
popovaan Aug 17, 2021
13866bc
Replaced arrays with vectors.
popovaan Aug 18, 2021
b24012e
Merge remote-tracking branch 'upstream/master' into random_uniform_re…
popovaan Aug 23, 2021
c370a7c
Apply suggestions from code review
popovaan Aug 24, 2021
81eceba
Merge remote-tracking branch 'upstream/master' into random_uniform_re…
popovaan Aug 24, 2021
52faa44
Merge remote-tracking branch 'upstream/master' into random_uniform_re…
popovaan Aug 26, 2021
bd37f4e
Code refactoring.
popovaan Aug 26, 2021
9a85beb
Corrected tests, code style.
popovaan Aug 26, 2021
13a000c
Added comment.
popovaan Aug 26, 2021
bf087ef
Added comments.
popovaan Aug 26, 2021
d12d032
Temporarily added debug output.
popovaan Aug 27, 2021
d38b31b
Temporarily added debug output.
popovaan Aug 27, 2021
80fb9a0
Removed debug output.
popovaan Aug 27, 2021
63e8ebb
Added comment.
popovaan Aug 27, 2021
d2a110a
Added comment.
popovaan Aug 27, 2021
150baf0
Merge remote-tracking branch 'upstream/master' into random_uniform_re…
popovaan Aug 27, 2021
454de07
Merge remote-tracking branch 'upstream/master' into random_uniform_re…
popovaan Aug 31, 2021
1e259e3
Enabled state saving for RandomUniform.
popovaan Sep 3, 2021
201a4e7
Code style.
popovaan Sep 5, 2021
597441a
Used to template to convert types.
popovaan Sep 5, 2021
66f305f
Merge remote-tracking branch 'upstream/master' into random_uniform_re…
popovaan Sep 5, 2021
04226e5
Added comments.
popovaan Sep 5, 2021
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
// Copyright (C) 2018-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include <gtest/gtest.h>

#include <vector>

#include "base_reference_test.hpp"
#include "ngraph/opsets/opset8.hpp"
#include "ngraph/util.hpp"

using namespace ngraph;

namespace reference_tests {
namespace {

struct RandomUniformParams {
RandomUniformParams(const std::vector<int64_t>& paramOutShape,
const Tensor& paramMinValue,
const Tensor& paramMaxValue,
ngraph::element::Type paramOutType,
int64_t paramGlobalSeed,
int64_t paramOpSeed,
const Tensor& paramExpected,
const std::string& test_name)
: out_shape(paramOutShape),
min_val(paramMinValue),
max_val(paramMaxValue),
out_type(paramOutType),
global_seed(paramGlobalSeed),
op_seed(paramOpSeed),
expected(paramExpected),
test_case_name(test_name) {}
std::vector<int64_t> out_shape;
Tensor min_val;
Tensor max_val;
ngraph::element::Type out_type;
int64_t global_seed;
int64_t op_seed;
Tensor expected;
std::string test_case_name;
};

class ReferenceRandomUniformLayerTest : public testing::TestWithParam<RandomUniformParams>, public CommonReferenceTest {
public:
void SetUp() override {
auto params = GetParam();
function = CreateFunction(params.out_shape,
params.min_val,
params.max_val,
params.out_type,
params.global_seed,
params.op_seed);
inputData = {params.min_val.data, params.max_val.data};
refOutData = {params.expected.data};
}
static std::string getTestCaseName(const testing::TestParamInfo<RandomUniformParams>& obj) {
auto param = obj.param;
return param.test_case_name;
}

private:
static std::shared_ptr<Function> CreateFunction(const std::vector<int64_t>& out_shape,
const Tensor& min_val,
const Tensor& max_val,
ngraph::element::Type out_type,
popovaan marked this conversation as resolved.
Show resolved Hide resolved
int64_t global_seed,
int64_t op_seed) {
const auto min_val_param = std::make_shared<opset8::Parameter>(min_val.type, min_val.shape);
const auto max_val_param = std::make_shared<opset8::Parameter>(max_val.type, max_val.shape);
auto out_shape_ = std::make_shared<opset8::Constant>(element::i64, Shape{out_shape.size()}, out_shape);

return std::make_shared<Function>(NodeVector{std::make_shared<opset8::RandomUniform>(out_shape_,
min_val_param,
max_val_param,
out_type,
global_seed,
op_seed)},
ParameterVector{min_val_param, max_val_param});
}
};

TEST_P(ReferenceRandomUniformLayerTest, RandomUniformWithHardcodedRefs) {
Exec();
}

} // namespace

INSTANTIATE_TEST_SUITE_P(
smoke_RandomUniform_With_Hardcoded_Refs,
ReferenceRandomUniformLayerTest,
::testing::Values(
RandomUniformParams(
std::vector<int64_t>{3, 2, 4},
Tensor{{1}, element::f32, std::vector<float>{0}},
Tensor{{1}, element::f32, std::vector<float>{1}},
element::Type_t::f32,
150,
10,
Tensor{{3, 2, 4},
element::f32,
std::vector<float>{
0.7011235952377319336, 0.3053963184356689453, 0.9393105506896972656, 0.9456034898757934570,
0.1169477701187133789, 0.5077005624771118164, 0.5197197198867797852, 0.2272746562957763672,
0.9913740158081054688, 0.3551903963088989258, 0.8269231319427490234, 0.5986485481262207031,
0.3136410713195800781, 0.5748131275177001953, 0.4139908552169799805, 0.9630825519561767578,
0.3714079856872558594, 0.8525316715240478516, 0.0935858488082885742, 0.0820095539093017578,
0.2365508079528808594, 0.8105630874633789062, 0.7422660589218139648, 0.7610669136047363281}},
"float32_default_min_max"),
RandomUniformParams(std::vector<int64_t>{3, 2, 4},
Tensor{{1}, element::f16, std::vector<float16>{0}},
Tensor{{1}, element::f16, std::vector<float16>{1}},
element::Type_t::f16,
150,
10,
Tensor{{3, 2, 4},
element::f16,
std::vector<float16>{0.6044921875, 0.8066406250, 0.8320312500, 0.3837890625,
0.0361328125, 0.0830078125, 0.5439453125, 0.8339843750,
0.3359375000, 0.7197265625, 0.1542968750, 0.1289062500,
0.3476562500, 0.8691406250, 0.4130859375, 0.5722656250,
0.5742187500, 0.9394531250, 0.6552734375, 0.8222656250,
0.8242187500, 0.1328125000, 0.6435546875, 0.6601562500}},
"float16_default_min_max"),
RandomUniformParams(std::vector<int64_t>{3, 2, 4},
Tensor{{1}, element::f32, std::vector<float>{-650}},
Tensor{{1}, element::f32, std::vector<float>{450}},
element::Type_t::f32,
150,
10,
Tensor{{3, 2, 4},
element::f32,
std::vector<float>{
121.2359619140625000000, -314.0640563964843750000, 383.2415771484375000000,
popovaan marked this conversation as resolved.
Show resolved Hide resolved
390.1638183593750000000, -521.3574218750000000000, -91.5293579101562500000,
-78.3082885742187500000, -399.9978637695312500000, 440.5114746093750000000,
-259.2905578613281250000, 259.6154174804687500000, 8.5134277343750000000,
-304.9948120117187500000, -17.7055664062500000000, -194.6100463867187500000,
409.3907470703125000000, -241.4512023925781250000, 287.7848510742187500000,
-547.0555419921875000000, -559.7894897460937500000, -389.7940979003906250000,
241.6193847656250000000, 166.4926757812500000000, 187.1735839843750000000}},
"float32_non_default_min_max"),
RandomUniformParams(std::vector<int64_t>{3, 2, 4},
Tensor{{1}, element::f16, std::vector<float16>{-1.5}},
Tensor{{1}, element::f16, std::vector<float16>{-1.0}},
element::Type_t::f16,
150,
10,
Tensor{{3, 2, 4},
element::f16,
std::vector<float16>{-1.1972656250, -1.0966796875, -1.0839843750, -1.3085937500,
-1.4824218750, -1.4589843750, -1.2285156250, -1.0830078125,
-1.3320312500, -1.1406250000, -1.4228515625, -1.4355468750,
-1.3261718750, -1.0654296875, -1.2929687500, -1.2138671875,
-1.2128906250, -1.0302734375, -1.1718750000, -1.0888671875,
-1.0878906250, -1.4335937500, -1.1777343750, -1.1699218750}},
"float16_non_default_min_max"),
RandomUniformParams(std::vector<int64_t>{2, 3, 4},
Tensor{{1}, element::i32, std::vector<int32_t>{-100}},
Tensor{{1}, element::i32, std::vector<int32_t>{50}},
element::Type_t::i32,
100,
350,
Tensor{{2, 3, 4},
element::i32,
std::vector<int32_t>{
22, -56, -33, -89, -98, -33, -3, -48, -82, 5, -66, 21,
29, -42, -73, -37, 3, 36, -35, 20, -11, -8, -78, 47,
}},
"int32"),
RandomUniformParams(std::vector<int64_t>{5, 4, 3},
Tensor{{1}, element::i64, std::vector<int64_t>{-2600}},
Tensor{{1}, element::i64, std::vector<int64_t>{3700}},
element::Type_t::i64,
755,
951,
Tensor{{5, 4, 3},
element::i64,
std::vector<int64_t>{
2116, -1581, 2559, -339, -1660, 519, 90, 2027, -210, 3330, 1831, -1737,
2683, 2661, 3473, 1220, 3534, -2384, 2199, 1935, 499, 2861, 2743, 3223,
-531, -836, -65, 3435, 632, 1765, 2613, 1891, 1698, 3069, 169, -792,
-32, 2976, -1552, -2588, 3327, -1756, 2637, -1084, 3567, -778, -1465, 2967,
1242, 2672, -1585, -2271, 3536, -1502, 400, 2241, 3126, 908, 1073, -2110}},
"int64"),
RandomUniformParams(std::vector<int64_t>{7, 3},
Tensor{{1}, element::bf16, std::vector<bfloat16>{0}},
Tensor{{1}, element::bf16, std::vector<bfloat16>{1}},
element::Type_t::bf16,
4978,
5164,
Tensor{{7, 3},
element::bf16,
std::vector<bfloat16>{0.8984375, 0.84375, 0.1640625, 0.1875, 0.46875, 0.6875,
0.5234375, 0.3046875, 0.9140625, 0.453125, 0.953125, 0.328125,
0.359375, 0.1875, 0.9453125, 0.390625, 0.21875, 0.9921875,
0.8203125, 0.453125, 0.875}},
"bfloat16_default_min_max"),
RandomUniformParams(std::vector<int64_t>{7, 3},
Tensor{{1}, element::bf16, std::vector<bfloat16>{-150}},
Tensor{{1}, element::bf16, std::vector<bfloat16>{200}},
element::Type_t::bf16,
4978,
5164,
Tensor{{7, 3},
element::bf16,
std::vector<bfloat16>{164, 146, -92.5, -84.5, 14, 90, 33, -43.5, 170, 8, 182,
-35, -24, -84.5, 180, -14, -73.5, 198, 138, 8, 156}},
"bfloat16_non_default_min_max")),
ReferenceRandomUniformLayerTest::getTestCaseName);
} // namespace reference_tests
4 changes: 4 additions & 0 deletions ngraph/core/include/ngraph/op/random_uniform.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,10 @@ class NGRAPH_API RandomUniform : public Op {
m_op_seed = seed2;
}

bool evaluate(const HostTensorVector& outputs, const HostTensorVector& inputs) const override;
popovaan marked this conversation as resolved.
Show resolved Hide resolved

bool has_evaluate() const override;

protected:
ngraph::element::Type m_output_type;
uint64_t m_global_seed;
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
// Copyright (C) 2018-2021 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#pragma once

#include <ctime>
#include <ngraph/type/element_type.hpp>

#include "ngraph/shape.hpp"

namespace ngraph {
namespace runtime {
namespace reference {
void random_uniform(const uint64_t* out_shape,
const char* min_val,
const char* max_val,
char* out,
const Shape& out_shape_shape,
ngraph::element::Type elem_type,
popovaan marked this conversation as resolved.
Show resolved Hide resolved
uint64_t seed,
uint64_t seed2);

const uint32_t crush_resistance_const_lower_value = 0x9E3779B9;
popovaan marked this conversation as resolved.
Show resolved Hide resolved
const uint32_t crush_resistance_const_upper_value = 0xBB67AE85;
const uint64_t statistic_maximizing_multiplier_n = 0xD2511F53;
const uint64_t statistic_maximizing_multiplier_counter = 0xCD9E8D57;
const size_t rounds_number = 10;

} // namespace reference
} // namespace runtime
} // namespace ngraph
Loading