Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for ONNX BatchNorm-7 and -9 #5465

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 29 additions & 4 deletions ngraph/frontend/onnx_import/src/op/batch_norm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@ namespace ngraph
{
namespace set_1
{
// This version supports ONNX BatchNormalization-1 and BatchNormalization-6
OutputVector batch_norm(const Node& node)
{
OutputVector inputs{node.get_ng_inputs()};
Expand All @@ -27,11 +28,10 @@ namespace ngraph
Output<ngraph::Node> mean;
Output<ngraph::Node> var;

std::int64_t is_test{node.get_attribute_value<std::int64_t>("is_test", 1)};
double epsilon{node.get_attribute_value<double>("epsilon", 1e-5)};

// TODO: Implement learning mode support
// float momentum{node.get_attribute_value<float>("momentum", 0.9f)};
// Currently only BatchNormalization inference mode is supported by OpenVINO
std::int64_t is_test{node.get_attribute_value<std::int64_t>("is_test", 1)};
CHECK_VALID_NODE(node, is_test, "only 'is_test' mode is supported.");

// optional outputs
Expand All @@ -55,9 +55,34 @@ namespace ngraph
throw ngraph_error(
"Cannot create nGraph batch norm with unsupported number of inputs");
}

} // namespace set_1

namespace set_7
{
// This version supports ONNX BatchNormalization-7 and BatchNormalization-9
OutputVector batch_norm(const Node& node)
{
OutputVector inputs{node.get_ng_inputs()};
auto x = inputs.at(0);
auto scale = inputs.at(1);
auto bias = inputs.at(2);
auto mean = inputs.at(3);
auto var = inputs.at(4);

double epsilon{node.get_attribute_value<double>("epsilon", 1e-5)};
// Attribute "spatial" is ignored, as we only support inference mode of
// BatchNormalization

CHECK_VALID_NODE(node,
node.get_outputs_size() == 1,
"Training mode of BatchNormalization is not supported.");

return {std::make_shared<default_opset::BatchNormInference>(
x, scale, bias, mean, var, epsilon)};
}

} // namespace set_7

} // namespace op

} // namespace onnx_import
Expand Down
6 changes: 6 additions & 0 deletions ngraph/frontend/onnx_import/src/op/batch_norm.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,12 @@ namespace ngraph

} // namespace set_1

namespace set_7
{
OutputVector batch_norm(const Node& node);

} // namespace set_7

} // namespace op

} // namespace onnx_import
Expand Down
1 change: 1 addition & 0 deletions ngraph/frontend/onnx_import/src/ops_bridge.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -316,6 +316,7 @@ namespace ngraph
REGISTER_OPERATOR("Atanh", 1, atanh);
REGISTER_OPERATOR("AveragePool", 1, average_pool);
REGISTER_OPERATOR("BatchNormalization", 1, batch_norm);
REGISTER_OPERATOR("BatchNormalization", 7, batch_norm);
REGISTER_OPERATOR("BitShift", 1, bitshift);
REGISTER_OPERATOR("Cast", 1, cast);
REGISTER_OPERATOR("Ceil", 1, ceil);
Expand Down