Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TF FE]: Support complex tensors for Sub operation #26342

Merged
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/frontends/tensorflow/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -195,7 +195,6 @@ const std::map<std::string, CreatorFunction> get_supported_ops() {
{"Pow", CreatorFunction(translate_binary_op<v1::Power>)},
{"RealDiv", CreatorFunction(translate_binary_op<v1::Divide>)},
{"SquaredDifference", CreatorFunction(translate_binary_op<v0::SquaredDifference>)},
{"Sub", CreatorFunction(translate_binary_op<v1::Subtract>)},
rkazants marked this conversation as resolved.
Show resolved Hide resolved

// note: ReduceOp translator declaration for each op must to be added in reduce.cpp file
{"Any", CreatorFunction(translate_direct_reduce_op<v1::ReduceLogicalOr>)},
Expand Down Expand Up @@ -396,6 +395,7 @@ const std::map<std::string, CreatorFunction> get_supported_ops() {
{"StatelessIf", CreatorFunction(translate_if_op)},
{"StatelessWhile", CreatorFunction(translate_while_op)},
{"StridedSlice", CreatorFunction(translate_strided_slice_op)},
{"Sub", CreatorFunction(translate_sub_op)},
{"Switch", CreatorFunction(translate_switch_op)},
{"TensorArrayCloseV3", CreatorFunction(translate_tensor_array_close_v3_op)},
{"TensorArrayConcatV3", CreatorFunction(translate_tensor_array_concat_v3_op)},
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -162,6 +162,7 @@ OP_CONVERTER(translate_split_v_op);
OP_CONVERTER(translate_square_op);
OP_CONVERTER(translate_squeeze_op);
OP_CONVERTER(translate_strided_slice_op);
OP_CONVERTER(translate_sub_op);
OP_CONVERTER(translate_sqrt_op);
OP_CONVERTER(translate_empty_tensor_list_op);
OP_CONVERTER(translate_tensor_list_from_tensor_op);
Expand Down
27 changes: 27 additions & 0 deletions src/frontends/tensorflow_common/src/op/binary_op.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -171,6 +171,33 @@ OutputVector translate_addv2_op(const NodeContext& node) {
return {result};
}

OutputVector translate_sub_op(const NodeContext& node) {
default_op_checks(node, 2, {"Sub"}, true);
auto lhs = node.get_input(0);
auto rhs = node.get_input(1);

auto complex_type_mark_lhs = as_type_ptr<ComplexTypeMark>(lhs.get_node_shared_ptr());
auto complex_type_mark_rhs = as_type_ptr<ComplexTypeMark>(rhs.get_node_shared_ptr());
auto complex_type_inputs = (complex_type_mark_lhs && complex_type_mark_rhs);

if (complex_type_inputs) {
lhs = complex_type_mark_lhs->input_value(0);
rhs = complex_type_mark_rhs->input_value(0);
}

// performing an actual operation
auto result = make_shared<v1::Subtract>(lhs, rhs);

if (complex_type_inputs) {
auto complex_result = make_shared<ComplexTypeMark>(result, complex_type_mark_lhs->get_complex_part_type());
set_node_name(node.get_name(), result);

return {complex_result};
}
set_node_name(node.get_name(), result);
return {result};
}

template OutputVector translate_binary_op<v1::Add>(const NodeContext& node);
rkazants marked this conversation as resolved.
Show resolved Hide resolved
template OutputVector translate_binary_op<v13::BitwiseAnd>(const NodeContext& node);
template OutputVector translate_binary_op<v13::BitwiseOr>(const NodeContext& node);
Expand Down
67 changes: 67 additions & 0 deletions tests/layer_tests/tensorflow_tests/test_tf_Sub.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,3 +216,70 @@ def test_sub_placeholder_const_broadcast_5D(self, params, ie_device, precision,
use_legacy_frontend=use_legacy_frontend),
ie_device, precision, ir_version,
temp_dir=temp_dir, use_legacy_frontend=use_legacy_frontend)


class TestComplexSub(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
rng = np.random.default_rng(84821)

assert 'param_real_x:0' in inputs_info
assert 'param_imag_x:0' in inputs_info

assert 'param_real_y:0' in inputs_info
assert 'param_imag_y:0' in inputs_info

param_real_shape_x = inputs_info['param_real_x:0']
param_imag_shape_x = inputs_info['param_imag_x:0']

param_real_shape_y = inputs_info['param_real_y:0']
param_imag_shape_y = inputs_info['param_imag_y:0']

inputs_data = {}
inputs_data['param_real_x:0'] = rng.uniform(-10.0, 10.0, param_real_shape_x).astype(np.float32)
inputs_data['param_imag_x:0'] = rng.uniform(-10.0, 10.0, param_imag_shape_x).astype(np.float32)

inputs_data['param_real_y:0'] = rng.uniform(-10.0, 10.0, param_real_shape_y).astype(np.float32)
inputs_data['param_imag_y:0'] = rng.uniform(-10.0, 10.0, param_imag_shape_y).astype(np.float32)

return inputs_data

def create_complex_sub_net(self, x_shape, y_shape, ir_version, use_legacy_frontend):
import tensorflow as tf

tf.compat.v1.reset_default_graph()
with tf.compat.v1.Session() as sess:
param_real_x = tf.compat.v1.placeholder(np.float32, x_shape, 'param_real_x')
param_imag_x = tf.compat.v1.placeholder(np.float32, x_shape, 'param_imag_x')

param_real_y = tf.compat.v1.placeholder(np.float32, y_shape, 'param_real_y')
param_imag_y = tf.compat.v1.placeholder(np.float32, y_shape, 'param_imag_y')

x = tf.raw_ops.Complex(real=param_real_x, imag=param_imag_x)
y = tf.raw_ops.Complex(real=param_real_y, imag=param_imag_y)

result = tf.subtract(x, y, name="Operation")
rkazants marked this conversation as resolved.
Show resolved Hide resolved
rkazants marked this conversation as resolved.
Show resolved Hide resolved

tf.raw_ops.Real(input=result)
tf.raw_ops.Imag(input=result)

tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def

ref_net = None

return tf_net, ref_net

@pytest.mark.parametrize('x_shape, y_shape', [
[[5, 5], [5]],
[[4, 10], [4, 1]],
[[1, 3, 50, 224], [1]],
[[10, 10, 10], [10, 10, 10]],
])
@pytest.mark.precommit
@pytest.mark.nightly
def test_complex_sub(self, x_shape, y_shape,
ie_device, precision, ir_version, temp_dir, use_legacy_frontend):
self._test(*self.create_complex_sub_net(x_shape, y_shape, ir_version=ir_version,
use_legacy_frontend=use_legacy_frontend),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)
Loading