Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TF FE] Support SparseTensorDenseMatMul operation #26064

Merged
merged 3 commits into from
Aug 14, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/frontends/tensorflow/docs/supported_ops.md
Original file line number Diff line number Diff line change
Expand Up @@ -1150,7 +1150,7 @@ A "supported operation" is one that TensorFlow Frontend can convert to the OpenV
| SparseSparseMinimum | NO | |
| SparseSplit | NO | |
| SparseTensorDenseAdd | NO | |
| SparseTensorDenseMatMul | NO | |
| SparseTensorDenseMatMul | YES | |
| SparseTensorSliceDataset | NO | |
| SparseTensorToCSRSparseMatrix | NO | |
| SparseToDense | YES | |
Expand Down
3 changes: 2 additions & 1 deletion src/frontends/tensorflow/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -370,7 +370,6 @@ const std::map<std::string, CreatorFunction> get_supported_ops() {
{"SaveV2", CreatorFunction(translate_no_op)},
{"ScatterNd", CreatorFunction(translate_scatter_nd_op)},
{"SegmentSum", CreatorFunction(translate_segment_sum_op)},
{"SparseToDense", CreatorFunction(translate_sparse_to_dense_op)},
{"Select", CreatorFunction(translate_select_op)},
{"SelectV2", CreatorFunction(translate_select_v2_op)},
{"Shape", CreatorFunction(translate_shape_op)},
Expand All @@ -381,6 +380,8 @@ const std::map<std::string, CreatorFunction> get_supported_ops() {
{"Softmax", CreatorFunction(translate_softmax_op)},
{"SpaceToDepth", CreatorFunction(translate_space_to_depth_op)},
{"SparseReshape", CreatorFunction(translate_sparse_reshape_op)},
{"SparseTensorDenseMatMul", CreatorFunction(translate_sparse_tensor_dense_mat_mul_op)},
{"SparseToDense", CreatorFunction(translate_sparse_to_dense_op)},
{"Split", CreatorFunction(translate_split_op)},
{"SplitV", CreatorFunction(translate_split_v_op)},
{"StopGradient", CreatorFunction(translate_identity_op)},
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -146,6 +146,7 @@ OP_CONVERTER(translate_rsqrt_op);
OP_CONVERTER(translate_scatter_nd_op);
OP_CONVERTER(translate_segment_sum_op);
OP_CONVERTER(translate_space_to_batch_nd_op);
OP_CONVERTER(translate_sparse_tensor_dense_mat_mul_op);
OP_CONVERTER(translate_sparse_to_dense_op);
OP_CONVERTER(translate_select_op);
OP_CONVERTER(translate_select_v2_op);
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
// Copyright (C) 2018-2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include "common_op_table.hpp"
#include "openvino/op/broadcast.hpp"
#include "openvino/op/matmul.hpp"
#include "openvino/op/scatter_nd_update.hpp"
#include "utils.hpp"

using namespace std;
using namespace ov::op;

namespace ov {
namespace frontend {
namespace tensorflow {
namespace op {
OutputVector translate_sparse_tensor_dense_mat_mul_op(const NodeContext& node) {
default_op_checks(node, 4, {"SparseTensorDenseMatMul"});
auto a_indices = node.get_input(0);
auto a_values = node.get_input(1);
auto a_shape = node.get_input(2);
auto b = node.get_input(3);
auto adjoint_a = node.get_attribute<bool>("adjoint_a", false);
auto adjoint_b = node.get_attribute<bool>("adjoint_b", false);

// create dense tensor
auto zero_const = create_same_type_const_scalar<int32_t>(a_values, 0);
ov::Output<ov::Node> a = make_shared<v3::Broadcast>(zero_const, a_shape);
a = make_shared<v15::ScatterNDUpdate>(a, a_indices, a_values);
auto res = make_shared<v0::MatMul>(a, b, adjoint_a, adjoint_b);
set_node_name(node.get_name(), res);
return {res};
}

} // namespace op
} // namespace tensorflow
} // namespace frontend
} // namespace ov
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
# Copyright (C) 2018-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import numpy as np
import platform
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest

rng = np.random.default_rng(475912)


class TestSparseTensorDenseMatMul(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'a_indices:0' in inputs_info
assert 'a_values:0' in inputs_info
assert 'b:0' in inputs_info

a_values_shape = inputs_info['a_values:0']
b_shape = inputs_info['b:0']

inputs_data = {}
if np.issubdtype(self.data_type, np.floating):
inputs_data['a_values:0'] = rng.uniform(-5.0, 5.0, a_values_shape).astype(self.data_type)
inputs_data['b:0'] = rng.uniform(-5.0, 5.0, b_shape).astype(self.data_type)
elif np.issubdtype(self.data_type, np.signedinteger):
inputs_data['a_values:0'] = rng.integers(-8, 8, a_values_shape).astype(self.data_type)
inputs_data['b:0'] = rng.integers(-8, 8, b_shape).astype(self.data_type)
else:
inputs_data['a_values:0'] = rng.integers(0, 8, a_values_shape).astype(self.data_type)
inputs_data['b:0'] = rng.integers(0, 8, b_shape).astype(self.data_type)

a_rows_num = self.a_shape[0]
a_cols_num = self.a_shape[1]

# generate all possible indices
all_indices = []
for row_ind in range(0, a_rows_num):
for col_ind in range(0, a_cols_num):
all_indices.append([row_ind, col_ind])
inputs_data['a_indices:0'] = rng.choice(all_indices, self.nnz, replace=False).astype(self.indices_type)

return inputs_data

def create_sparse_tensor_dense_mat_mul_net(self, data_type, indices_type,
adjoint_a, adjoint_b,
a_shape, b_shape, nnz):
a_shape = a_shape.copy()
b_shape = b_shape.copy()
if adjoint_a:
a_shape.reverse()
if adjoint_b:
b_shape.reverse()

self.data_type = data_type
self.indices_type = indices_type
self.a_shape = a_shape
self.nnz = nnz
tf.compat.v1.reset_default_graph()
with tf.compat.v1.Session() as sess:
a_indices = tf.compat.v1.placeholder(indices_type, [nnz, 2], 'a_indices')
a_values = tf.compat.v1.placeholder(data_type, [nnz], 'a_values')
a_shape = tf.constant(a_shape, dtype=tf.int64)
b = tf.compat.v1.placeholder(data_type, b_shape, 'b')
tf.raw_ops.SparseTensorDenseMatMul(
a_indices=a_indices,
a_values=a_values,
a_shape=a_shape,
b=b,
adjoint_a=adjoint_a,
adjoint_b=adjoint_b)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def

ref_net = None

return tf_net, ref_net

@pytest.mark.parametrize('data_type', [np.float32, np.float64, np.int32])
@pytest.mark.parametrize('indices_type', [np.int32, np.int64])
@pytest.mark.parametrize('adjoint_a', [True, False])
@pytest.mark.parametrize('adjoint_b', [True, False])
@pytest.mark.parametrize('a_shape, b_shape, nnz', [
[[4, 10], [10, 5], 8],
[[5, 5], [5, 5], 3],
])
@pytest.mark.precommit
@pytest.mark.nightly
def test_sparse_tensor_dense_mat_mul(self, data_type, indices_type,
adjoint_a, adjoint_b,
a_shape, b_shape, nnz,
ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
self._test(*self.create_sparse_tensor_dense_mat_mul_net(data_type, indices_type,
adjoint_a, adjoint_b,
a_shape, b_shape, nnz),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)
Loading