Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[GPU] Optimize iGPU FC with prime number batch size #24893

Merged
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -167,8 +167,15 @@ bool TuneParamsSelector::VerifyTuneParams(const fully_connected_params& params,
return false;

auto batch_size = params.is_shape_agnostic ? Align(output_b, tparams.tile_b) : output_b;
if (batch_size % (tparams.tile_b * tparams.dispatch_bsv) != 0)
return false;
if (batch_size % (tparams.tile_b * tparams.dispatch_bsv) != 0) {
size_t tile = simd;
while (batch_size % tile != 0)
tile--;
if ((tparams.dispatch_bsv != 1) || (tile > 1) || batch_size == 1)
riverlijunjie marked this conversation as resolved.
Show resolved Hide resolved
return false;
std::cout << "batch_size = " << batch_size << ", output_b = " << output_b << std::endl << std::endl;
riverlijunjie marked this conversation as resolved.
Show resolved Hide resolved
}

if (CeilDiv(output_f, tparams.tile_ofm * simd) % tparams.dispatch_fsv != 0)
return false;

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1058,6 +1058,59 @@ TEST(fully_connected_gpu, bf_tiled_with_pad) {
}
}

TEST(fully_connected_gpu, bf_tiled_with_unaligned_batch) {
tests::random_generator rg(GET_SUITE_NAME);
auto& engine = get_test_engine();
// Test parameters with unaligned batch size.
const int batch_num = 17;
const int feature_num = 1;
const int input_x = 1;
const int input_y = 64;
const int output_y = input_y;

// Allocate memory
auto input_mem =
engine.allocate_memory({{batch_num, feature_num, input_y, input_x}, data_types::f16, format::bfyx});
auto weights_mem = engine.allocate_memory({{output_y, input_y}, data_types::f16, format::bfyx});

// Generate random input data and set values
auto input_data = rg.generate_random_4d<ov::float16>(batch_num, feature_num, input_y, input_x, -1, 1);
auto weights_data = rg.generate_random_4d<ov::float16>(output_y, input_y, 1, 1, -1, 1);

auto input_data_bfyx = flatten_4d(format::bfyx, input_data);
auto weights_data_bfyx = flatten_4d(format::bfyx, weights_data);

std::vector<ov::float16> empty_bias(output_y, 0);
set_values(input_mem, input_data_bfyx);
set_values(weights_mem, weights_data_bfyx);
auto reference_output = dynamic_fully_connected_reference_calc<ov::float16>(batch_num * feature_num,
input_y,
output_y,
input_data_bfyx,
weights_data_bfyx,
empty_bias);
topology topology(input_layout("input", input_mem->get_layout()),
data("weights", weights_mem),
fully_connected("fc_prim", input_info("input"), "weights", "", padding(), 3, 3));

// Set data optimization to allow weights reordering to optimal format
ExecutionConfig config = get_test_default_config(engine);
config.set_property(ov::intel_gpu::optimize_data(true));
ov::intel_gpu::ImplementationDesc fc_impl_desc = {format::bfyx, "fully_connected_gpu_bf_tiled", impl_types::ocl};
config.set_property(ov::intel_gpu::force_implementations(ov::intel_gpu::ImplForcingMap{{"fc_prim", fc_impl_desc}}));

network network(engine, topology, config);
network.set_input_data("input", input_mem);

auto outputs = network.execute();
auto output_mem = outputs.at("fc_prim").get_memory();
cldnn::mem_lock<ov::float16> output_ptr(output_mem, get_test_stream());
ASSERT_EQ(output_mem->count(), batch_num * feature_num * output_y);

for (size_t i = 0; i < batch_num * feature_num * output_y; ++i) {
ASSERT_FLOAT_EQ(reference_output[i], output_ptr[i]) << " i = " << i;
}
}

TEST(fully_connected_gpu, DISABLED_fs_byx_fsv32_b34)
{
Expand Down
Loading