Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[GPU] Skip Depth To Space fusing when dynamic shape and skip broadcastable check in select typed_primitive_inst() when new shape infer #23270

Merged
merged 3 commits into from
Mar 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -536,6 +536,8 @@ void prepare_primitive_fusing::fuse_simple_primitives(program &p) {
bool input_conv = node.get_dependency(0).is_type<convolution>();
bool out_eltw = node.get_users().front()->is_type<eltwise>();
if (input_conv && out_eltw) {
if (node.is_dynamic())
return false;
auto& eltw = static_cast<const eltwise&>(*node.get_users().front()->get_primitive());
auto& conv = node.get_dependency(0).as<convolution>();
auto eltw_mode = eltw.mode == eltwise_mode::sum;
Expand Down
86 changes: 45 additions & 41 deletions src/plugins/intel_gpu/src/graph/select.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -92,49 +92,53 @@ select_inst::typed_primitive_inst(network& network, select_node const& node) : p
3,
"");

if (node.get_primitive()->broadcast_spec.m_type == ov::op::AutoBroadcastType::NONE) {
CLDNN_ERROR_LAYOUT_MISMATCH(node.id(),
"Positive input layout",
deps[1].first->get_output_layout(),
"Negative input layout",
deps[2].first->get_output_layout(),
"");

CLDNN_ERROR_NOT_EQUAL(node.id(),
"Mask size",
deps[0].first->get_output_layout().get_tensor(),
"Positive input format",
deps[1].first->get_output_layout().get_tensor(),
"");
} else if (node.get_primitive()->broadcast_spec.m_type == ov::op::AutoBroadcastType::NUMPY) {
CLDNN_ERROR_DATA_TYPES_MISMATCH(node.id(),
"Positive input data type",
deps[1].first->get_output_layout().data_type,
"Negative input data type",
deps[2].first->get_output_layout().data_type,
"");

auto dep1_size = deps[1].first->get_output_layout().get_tensor();
auto dep2_size = deps[2].first->get_output_layout().get_tensor();
cldnn::tensor output_tensor = tensor::max(dep1_size, dep2_size);
// Cond input0 also can be broadcasted.
auto dep0_size = deps[0].first->get_output_layout().get_tensor();
output_tensor = tensor::max(dep0_size, output_tensor);

auto max_dim_count = output_tensor.raw.size();

for (size_t i = 0; i < deps.size(); i++) {
for (size_t d = 0; d < max_dim_count; d++) {
auto current_dim = deps[i].first->get_output_layout().get_tensor().raw[d];

CLDNN_ERROR_BOOL(node.id(),
"Sizes equal or broadcast is possible",
!(current_dim == output_tensor.raw[d] || current_dim == 1),
"Invalid input shapes");
bool allow_new_shape_infer = network.get_program()->get_config().get_property(ov::intel_gpu::allow_new_shape_infer);
// Broadcast check is performed in ngraph shape infer of select when allow_new_shape_infer=true
if (!allow_new_shape_infer) {
if (node.get_primitive()->broadcast_spec.m_type == ov::op::AutoBroadcastType::NONE) {
CLDNN_ERROR_LAYOUT_MISMATCH(node.id(),
"Positive input layout",
deps[1].first->get_output_layout(),
"Negative input layout",
deps[2].first->get_output_layout(),
"");

CLDNN_ERROR_NOT_EQUAL(node.id(),
"Mask size",
deps[0].first->get_output_layout().get_tensor(),
"Positive input format",
deps[1].first->get_output_layout().get_tensor(),
"");
} else if (node.get_primitive()->broadcast_spec.m_type == ov::op::AutoBroadcastType::NUMPY) {
CLDNN_ERROR_DATA_TYPES_MISMATCH(node.id(),
"Positive input data type",
deps[1].first->get_output_layout().data_type,
"Negative input data type",
deps[2].first->get_output_layout().data_type,
"");

auto dep1_size = deps[1].first->get_output_layout().get_tensor();
auto dep2_size = deps[2].first->get_output_layout().get_tensor();
cldnn::tensor output_tensor = tensor::max(dep1_size, dep2_size);
// Cond input0 also can be broadcasted.
auto dep0_size = deps[0].first->get_output_layout().get_tensor();
output_tensor = tensor::max(dep0_size, output_tensor);

auto max_dim_count = output_tensor.raw.size();

for (size_t i = 0; i < deps.size(); i++) {
for (size_t d = 0; d < max_dim_count; d++) {
auto current_dim = deps[i].first->get_output_layout().get_tensor().raw[d];

CLDNN_ERROR_BOOL(node.id(),
"Sizes equal or broadcast is possible",
!(current_dim == output_tensor.raw[d] || current_dim == 1),
"Invalid input shapes");
}
}
} else {
CLDNN_ERROR_MESSAGE(node.id(), "Unsupported broadcast_type: " + std::to_string(static_cast<int>(node.get_primitive()->broadcast_spec.m_type)));
}
} else {
CLDNN_ERROR_MESSAGE(node.id(), "Unsupported broadcast_type: " + std::to_string(static_cast<int>(node.get_primitive()->broadcast_spec.m_type)));
}
}
} // namespace cldnn
Original file line number Diff line number Diff line change
Expand Up @@ -120,6 +120,11 @@ const std::vector<std::vector<InputShape>> inShapesDynamicNumpy = {
{ { -1, -1, -1}, {{ 4, 5, 6}} },
{ { -1, -1}, {{ 5, 6}} }
},
{
{ { -1}, {{ 130048}} },
{ { -1, -1}, {{ 2, 130048}} },
{ { -1, -1}, {{ 2, 130048}} }
},
};

const auto numpyCases = ::testing::Combine(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
#include "fully_connected_inst.h"
#include "gemm_inst.h"
#include "convolution_inst.h"
#include "depth_to_space_inst.h"
#include "pass_manager.h"
#include "to_string_utils.h"

Expand Down Expand Up @@ -648,4 +649,43 @@ TEST(prepare_primitive_fusing, can_profiling_data_when_fuse_illegal) {
auto output = net.execute();
for (auto& iter : output)
ASSERT_NE(iter.second.get_event(), nullptr);
}

TEST(prepare_primitive_fusing, dont_fuse_eltwise_to_dyn_dts) {
auto& engine = get_test_engine();
tests::random_generator rg(GET_SUITE_NAME);

auto in_layout = layout{ ov::PartialShape{-1, -1, -1, -1}, data_types::f32, format::bfyx };
auto weight_layout = layout{ ov::PartialShape{32, 32, 3, 3}, data_types::f32, format::bfyx};
auto weight_mem = engine.allocate_memory(weight_layout);
auto weight_data = rg.generate_random_4d<ov::float16>(32, 32, 3, 3, -1, 1);
set_values(weight_mem, weight_data);
auto scale_layout = layout{ ov::PartialShape{1, 2, 1, 1}, data_types::f32, format::bfyx };
auto scale_mem = engine.allocate_memory(scale_layout);
auto elt_layout = layout{ ov::PartialShape{1, 2, 32, 32}, data_types::f32, format::bfyx };
auto elt_mem = engine.allocate_memory(elt_layout);

topology topology;

topology.add(data("weights", weight_mem));
topology.add(input_layout("input", in_layout));
topology.add(convolution("conv", input_info("input"), "weights", "", 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, false));
topology.add(depth_to_space("depth_to_space", input_info("conv"), 4, depth_to_space_mode::blocks_first));
topology.add(data("scale1_data", scale_mem));
topology.add(eltwise("scale1", { input_info("depth_to_space"), input_info("scale1_data") }, eltwise_mode::prod, data_types::f32));
topology.add(activation("actv1", input_info("scale1"), activation_func::relu));
topology.add(data("eltw_data", elt_mem));
topology.add(eltwise("eltw", { input_info("actv1"), input_info("eltw_data") }, eltwise_mode::sum, data_types::f32));
topology.add(reorder("reorder_bfyx", input_info("eltw"), format::bfyx, data_types::f32));

ExecutionConfig config = get_test_default_config(engine);
config.set_property(ov::intel_gpu::allow_new_shape_infer(true));
auto prog = program::build_program(engine, topology, config, false, true);

layout_optimizer lo(true);

program_wrapper::apply_opt_pass<prepare_primitive_fusing>(*prog, lo);

ASSERT_NE(prog, nullptr);
ASSERT_TRUE(has_node(*prog, "scale1"));
}
Loading