Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[GPU] Use explicit output indexes in the tr_matmul_tr transformation pass #22769

Merged
merged 2 commits into from
Feb 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -107,8 +107,8 @@ TransposeMatMulMatcher::TransposeMatMulMatcher() {
std::swap(*(order_b.end() - 1), *(order_b.end() - 2));
}

auto input_a = pattern_map.at(input_a_m).get_node_shared_ptr();
auto input_b = pattern_map.at(input_b_m).get_node_shared_ptr();
auto input_a = ov::Output<Node>(pattern_map.at(input_a_m).get_node_shared_ptr(), matmul->get_input_source_output(0).get_index());
auto input_b = ov::Output<Node>(pattern_map.at(input_b_m).get_node_shared_ptr(), matmul->get_input_source_output(1).get_index());

auto gemm = std::make_shared<op::Gemm>(input_a, input_b, order_a, order_b, order_c);
gemm->set_friendly_name(matmul->get_friendly_name());
Expand Down Expand Up @@ -175,8 +175,8 @@ TransposeMatMulTransposeMatcher::TransposeMatMulTransposeMatcher() {
std::swap(*(order_b.end() - 1), *(order_b.end() - 2));
}

auto input_a = pattern_map.at(input_a_m).get_node_shared_ptr();
auto input_b = pattern_map.at(input_b_m).get_node_shared_ptr();
auto input_a = ov::Output<Node>(pattern_map.at(input_a_m).get_node_shared_ptr(), matmul->get_input_source_output(0).get_index());
auto input_b = ov::Output<Node>(pattern_map.at(input_b_m).get_node_shared_ptr(), matmul->get_input_source_output(1).get_index());

auto gemm = std::make_shared<op::Gemm>(input_a, input_b, order_a, order_b, order_c);
gemm->set_friendly_name(m.get_match_root()->get_friendly_name());
Expand Down
224 changes: 192 additions & 32 deletions src/plugins/intel_gpu/tests/unit/test_cases/gemm_gpu_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -692,7 +692,7 @@ class gemm_gpu_tests: public ::testing::Test {
}
}

void test_transpose_matmul(bool is_caching_test) {
void test_transpose_matmul(size_t num_dims, bool is_input_dynamic, bool is_caching_test) {
tests::random_generator rg;
rg.set_seed(GET_SUITE_NAME);

Expand All @@ -719,12 +719,43 @@ class gemm_gpu_tests: public ::testing::Test {
};

auto& engine = get_test_engine();
ov::Shape input0_shape = { BATCH_SIZE, K_SIZE, 1, M_SIZE };
ov::Shape input1_shape = { N_SIZE, BATCH_SIZE, 1, K_SIZE };
std::vector<int64_t> input0_order = {0, 2, 3, 1};
std::vector<int64_t> input1_order = {1, 2, 3, 0};
auto input0_layout = layout{ov::PartialShape::dynamic(input0_shape.size()), data_types::f32, format::bfyx};
auto input1_layout = layout{ov::PartialShape::dynamic(input1_shape.size()), data_types::f32, format::bfyx};
ov::Shape input0_shape;
ov::Shape input1_shape;
std::vector<int64_t> input0_order;
std::vector<int64_t> input1_order;
cldnn::layout input0_layout;
cldnn::layout input1_layout;

if (num_dims == 1) {
input0_shape = { K_SIZE };
input1_shape = { N_SIZE, K_SIZE };
input0_order = { 0 };
input1_order = { 1, 0 };
} else if (num_dims == 2) {
input0_shape = { K_SIZE, M_SIZE };
input1_shape = { N_SIZE, K_SIZE };
input0_order = { 1, 0 };
input1_order = { 1, 0 };
} else if (num_dims == 3) {
input0_shape = { BATCH_SIZE, K_SIZE, M_SIZE };
input1_shape = { N_SIZE, BATCH_SIZE, K_SIZE };
input0_order = { 0, 2, 1 };
input1_order = { 1, 2, 0 };
} else if (num_dims == 4) {
input0_shape = { BATCH_SIZE, K_SIZE, 1, M_SIZE };
input1_shape = { N_SIZE, BATCH_SIZE, 1, K_SIZE };
input0_order = { 0, 2, 3, 1 };
input1_order = { 1, 2, 3, 0 };
}

if (is_input_dynamic) {
input0_layout = layout{ov::PartialShape::dynamic(input0_shape.size()), data_types::f32, format::bfyx};
input1_layout = layout{ov::PartialShape::dynamic(input1_shape.size()), data_types::f32, format::bfyx};
} else {
input0_layout = layout{ov::PartialShape(input0_shape), data_types::f32, format::bfyx};
input1_layout = layout{ov::PartialShape(input1_shape), data_types::f32, format::bfyx};
}

auto input0_mem = engine.allocate_memory(layout{ov::PartialShape(input0_shape), data_types::f32, format::bfyx});
auto input1_mem = engine.allocate_memory(layout{ov::PartialShape(input1_shape), data_types::f32, format::bfyx});

Expand All @@ -750,16 +781,33 @@ class gemm_gpu_tests: public ::testing::Test {
auto inst = network->get_primitive("gemm");
auto impl = inst->get_impl();
ASSERT_TRUE(impl != nullptr);
ASSERT_TRUE(impl->is_dynamic());
ASSERT_TRUE(impl->is_dynamic() == is_input_dynamic);

auto outputs = network->execute();

auto output_mem = outputs.at("gemm").get_memory();
cldnn::mem_lock<float> output_ptr(output_mem, get_test_stream());

ov::Shape ref_input0_shape = { BATCH_SIZE, 1, M_SIZE, K_SIZE };
ov::Shape ref_input1_shape = { BATCH_SIZE, 1, K_SIZE, N_SIZE };
ov::Shape ref_output_shape = { BATCH_SIZE, 1, M_SIZE, N_SIZE };
ov::Shape ref_input0_shape;
ov::Shape ref_input1_shape;
ov::Shape ref_output_shape;
if (num_dims == 1) {
ref_input0_shape = { K_SIZE };
ref_input1_shape = { K_SIZE, N_SIZE };
ref_output_shape = { 1, N_SIZE };
} else if (num_dims == 2) {
ref_input0_shape = { M_SIZE, K_SIZE };
ref_input1_shape = { K_SIZE, N_SIZE };
ref_output_shape = { M_SIZE, N_SIZE };
} else if (num_dims == 3) {
ref_input0_shape = { BATCH_SIZE, M_SIZE, K_SIZE };
ref_input1_shape = { BATCH_SIZE, K_SIZE, N_SIZE };
ref_output_shape = { BATCH_SIZE, M_SIZE, N_SIZE };
} else if (num_dims == 4) {
ref_input0_shape = { BATCH_SIZE, 1, M_SIZE, K_SIZE };
ref_input1_shape = { BATCH_SIZE, 1, K_SIZE, N_SIZE };
ref_output_shape = { BATCH_SIZE, 1, M_SIZE, N_SIZE };
}

std::vector<float> ref_out_data;
ref_out_data.resize(ov::shape_size(ref_output_shape));
Expand Down Expand Up @@ -798,7 +846,7 @@ class gemm_gpu_tests: public ::testing::Test {
}
}

void test_transpose_matmul_transpose(bool is_caching_test) {
void test_transpose_matmul_transpose(size_t num_dims, bool is_input_dynamic, bool is_caching_test) {
tests::random_generator rg;
rg.set_seed(GET_SUITE_NAME);

Expand All @@ -825,13 +873,48 @@ class gemm_gpu_tests: public ::testing::Test {
};

auto& engine = get_test_engine();
ov::Shape input0_shape = { M_SIZE, K_SIZE, 1, BATCH_SIZE };
ov::Shape input1_shape = { N_SIZE, 1, BATCH_SIZE, K_SIZE };
std::vector<int64_t> input0_order = {3, 2, 0, 1};
std::vector<int64_t> input1_order = {2, 1, 3, 0};
std::vector<int64_t> output_order = {1, 0, 3, 2};
auto input0_layout = layout{ov::PartialShape::dynamic(input0_shape.size()), data_types::f16, format::bfyx};
auto input1_layout = layout{ov::PartialShape::dynamic(input1_shape.size()), data_types::f16, format::bfyx};
ov::Shape input0_shape;
ov::Shape input1_shape;
std::vector<int64_t> input0_order;
std::vector<int64_t> input1_order;
std::vector<int64_t> output_order;
cldnn::layout input0_layout;
cldnn::layout input1_layout;

if (num_dims == 1) {
input0_shape = { K_SIZE };
input1_shape = { N_SIZE, K_SIZE };
input0_order = { 0 };
input1_order = { 1, 0 };
output_order = { 0 };
} else if (num_dims == 2) {
input0_shape = { K_SIZE, M_SIZE };
input1_shape = { N_SIZE, K_SIZE };
input0_order = { 1, 0 };
input1_order = { 1, 0 };
output_order = { 1, 0 };
} else if (num_dims == 3) {
input0_shape = { BATCH_SIZE, K_SIZE, M_SIZE };
input1_shape = { N_SIZE, BATCH_SIZE, K_SIZE };
input0_order = { 0, 2, 1 };
input1_order = { 1, 2, 0 };
output_order = { 1, 0, 2 };
} else if (num_dims == 4) {
input0_shape = { M_SIZE, K_SIZE, 1, BATCH_SIZE };
input1_shape = { N_SIZE, 1, BATCH_SIZE, K_SIZE };
input0_order = {3, 2, 0, 1};
input1_order = {2, 1, 3, 0};
output_order = {1, 0, 3, 2};
}

if (is_input_dynamic) {
input0_layout = layout{ov::PartialShape::dynamic(input0_shape.size()), data_types::f16, format::bfyx};
input1_layout = layout{ov::PartialShape::dynamic(input1_shape.size()), data_types::f16, format::bfyx};
} else {
input0_layout = layout{ov::PartialShape(input0_shape), data_types::f16, format::bfyx};
input1_layout = layout{ov::PartialShape(input1_shape), data_types::f16, format::bfyx};
}

auto input0_mem = engine.allocate_memory(layout{ov::PartialShape(input0_shape), data_types::f16, format::bfyx});
auto input1_mem = engine.allocate_memory(layout{ov::PartialShape(input1_shape), data_types::f16, format::bfyx});

Expand All @@ -857,17 +940,38 @@ class gemm_gpu_tests: public ::testing::Test {
auto inst = network->get_primitive("gemm");
auto impl = inst->get_impl();
ASSERT_TRUE(impl != nullptr);
ASSERT_TRUE(impl->is_dynamic());
ASSERT_TRUE(impl->is_dynamic() == is_input_dynamic);

auto outputs = network->execute();

auto output_mem = outputs.at("gemm").get_memory();
cldnn::mem_lock<ov::float16> output_ptr(output_mem, get_test_stream());

ov::Shape ref_input0_shape = { BATCH_SIZE, 1, M_SIZE, K_SIZE };
ov::Shape ref_input1_shape = { BATCH_SIZE, 1, K_SIZE, N_SIZE };
ov::Shape ref_output_shape = { BATCH_SIZE, 1, M_SIZE, N_SIZE };
ov::Shape transposed_output_shape = { 1, BATCH_SIZE, N_SIZE, M_SIZE };
ov::Shape ref_input0_shape;
ov::Shape ref_input1_shape;
ov::Shape ref_output_shape;
ov::Shape transposed_output_shape;
if (num_dims == 1) {
ref_input0_shape = { K_SIZE };
ref_input1_shape = { K_SIZE, N_SIZE };
ref_output_shape = { 1, N_SIZE };
transposed_output_shape = { N_SIZE, 1 };
} else if (num_dims == 2) {
ref_input0_shape = { M_SIZE, K_SIZE };
ref_input1_shape = { K_SIZE, N_SIZE };
ref_output_shape = { M_SIZE, N_SIZE };
transposed_output_shape = { N_SIZE, M_SIZE };
} else if (num_dims == 3) {
ref_input0_shape = { BATCH_SIZE, M_SIZE, K_SIZE };
ref_input1_shape = { BATCH_SIZE, K_SIZE, N_SIZE };
ref_output_shape = { BATCH_SIZE, M_SIZE, N_SIZE };
transposed_output_shape = { M_SIZE, BATCH_SIZE, N_SIZE };
} else if (num_dims == 4) {
ref_input0_shape = { BATCH_SIZE, 1, M_SIZE, K_SIZE };
ref_input1_shape = { BATCH_SIZE, 1, K_SIZE, N_SIZE };
ref_output_shape = { BATCH_SIZE, 1, M_SIZE, N_SIZE };
transposed_output_shape = { 1, BATCH_SIZE, N_SIZE, M_SIZE };
}

std::vector<ov::float16> ref_out_data;
ref_out_data.resize(ov::shape_size(ref_output_shape));
Expand Down Expand Up @@ -936,12 +1040,68 @@ TEST_F(gemm_gpu_tests, dynamic_multi_inference_different_shape) {
this->test_dynamic_multi_inference_different_shape(false);
}

TEST_F(gemm_gpu_tests, transpose_matmul) {
this->test_transpose_matmul(false);
TEST_F(gemm_gpu_tests, transpose_matmul_dynamic_1d) {
this->test_transpose_matmul(1, true, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_static_1d) {
this->test_transpose_matmul(1, false, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_dynamic_2d) {
this->test_transpose_matmul(2, true, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_static_2d) {
this->test_transpose_matmul(2, false, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_dynamic_3d) {
this->test_transpose_matmul(3, true, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_static_3d) {
this->test_transpose_matmul(3, false, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_dynamic_4d) {
this->test_transpose_matmul(4, true, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_static_4d) {
this->test_transpose_matmul(4, false, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_transpose_dynamic_1d) {
this->test_transpose_matmul_transpose(1, true, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_transpose_static_1d) {
this->test_transpose_matmul_transpose(1, false, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_transpose_dynamic_2d) {
this->test_transpose_matmul_transpose(2, true, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_transpose_static_2d) {
this->test_transpose_matmul_transpose(2, false, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_transpose_dynamic_3d) {
this->test_transpose_matmul_transpose(3, true, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_transpose_static_3d) {
this->test_transpose_matmul_transpose(3, false, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_transpose_dynamic_4d) {
this->test_transpose_matmul_transpose(4, true, false);
}

TEST_F(gemm_gpu_tests, transpose_matmul_transpose) {
this->test_transpose_matmul_transpose(false);
TEST_F(gemm_gpu_tests, transpose_matmul_transpose_static_4d) {
this->test_transpose_matmul_transpose(4, false, false);
}

INSTANTIATE_TEST_SUITE_P(
Expand Down Expand Up @@ -2366,11 +2526,11 @@ TEST_F(gemm_gpu_tests, basic_bfyx_t2_inplace_crop_with_pad_cached) {
this->test_basic_bfyx_t2_inplace_crop_with_pad(true);
}

TEST_F(gemm_gpu_tests, transpose_matmul_cached) {
this->test_transpose_matmul(true);
TEST_F(gemm_gpu_tests, transpose_matmul_dynamic_4d_cached) {
this->test_transpose_matmul(4, true, true);
}

TEST_F(gemm_gpu_tests, transpose_matmul_transpose_cached) {
this->test_transpose_matmul_transpose(true);
TEST_F(gemm_gpu_tests, transpose_matmul_transpose_dynamic_4d_cached) {
this->test_transpose_matmul_transpose(4, true, true);
}
} // namespace
Loading