Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MO] Relax Reshape layer hardcode under MatMul #1921

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 76 additions & 1 deletion model-optimizer/extensions/back/MatMulNormalizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,14 @@

from extensions.ops.transpose import Transpose
from mo.back.replacement import BackReplacementPattern
from mo.front.caffe.extractors.utils import get_canonical_axis_index
from mo.front.common.partial_infer.utils import int64_array
from mo.front.tf.graph_utils import create_op_node_with_second_input
from mo.graph.graph import Graph
from mo.graph.graph import Graph, Node
from mo.ops.const import Const
from mo.ops.shape import Shape
from mo.ops.unsqueeze import Unsqueeze
from mo.utils.shape import node_to_get_shape_value_of_indices, new_shape_node_from_shape_nodes


class MatMulConstTransposesExtraction(BackReplacementPattern):
Expand Down Expand Up @@ -142,3 +145,75 @@ def replace_pattern(graph: Graph, match: dict):
src = port.get_source()
port.get_connection().set_source(transpose_copy.out_port(0))
src.connect(start_port)


class SmartReshape_HC_Reshape_MatMul(BackReplacementPattern):
"""
Relaxes hard-coded input of Reshape in such sub-graphs:
jane-intel marked this conversation as resolved.
Show resolved Hide resolved

input_1 Constant
\ /
Reshape input_2
\ /
MatMul
|
"""
enabled = True
force_clean_up = True

def run_after(self):
return [MatMulConstTransposesExtraction]

def pattern(self):
return dict(
nodes=[
('output_shape', dict(type='Const')),
('output_shape_d', dict()),
('reshape', dict(type='Reshape')),
('reshape_d', dict()),
('other_input', dict(type=lambda t: t not in ['Reshape', 'Transpose'])),
('other_input_d', dict()),
('matmul', dict(type='MatMul')),
],
edges=[
('output_shape', 'output_shape_d'),
('output_shape_d', 'reshape', {'in': 1}),
('reshape', 'reshape_d'),
('reshape_d', 'matmul'),
('other_input', 'other_input_d'),
('other_input_d', 'matmul'),
]
)

def replace_pattern(self, graph: Graph, match: dict):
matmul = match['matmul']
reshape = match['reshape']
other_input_port_idx = 0 if match['matmul'].in_port(0).get_source().node.id == match['other_input'].id else 1
shape_source = match['matmul'].in_port(other_input_port_idx).get_source()
initial_reshape_pattern = reshape.in_port(1).data.get_value()
jane-intel marked this conversation as resolved.
Show resolved Hide resolved
if len(initial_reshape_pattern) != 2:
return

reshape_is_A_input = matmul.in_port(0).get_source().node.id == reshape.id
if reshape_is_A_input:
idx = -1 if matmul.transpose_b else -2
jane-intel marked this conversation as resolved.
Show resolved Hide resolved
else:
idx = -2 if matmul.transpose_a else -1
idx = get_canonical_axis_index(initial_reshape_pattern, idx)

shape_name = shape_source.node.soft_get('name', shape_source.node.id)
shape = Shape(graph, {'name': shape_name + '/Shape'}).create_node()
shape.in_port(0).connect(shape_source)
C = node_to_get_shape_value_of_indices(shape, [idx])
N = Const(graph, {'name': shape_name + '/MinusOne', 'value': int64_array([-1])}).create_node()

if len(initial_reshape_pattern) == 2:
jane-intel marked this conversation as resolved.
Show resolved Hide resolved
if reshape_is_A_input:
reshape_pattern = [C, N] if matmul.transpose_a else [N, C]
else:
reshape_pattern = [N, C] if matmul.transpose_b else [C, N]
new_reshape_pattern = new_shape_node_from_shape_nodes(reshape_pattern)
reshape.in_port(1).get_connection().set_source(new_reshape_pattern.out_port(0))
else:
return

110 changes: 110 additions & 0 deletions model-optimizer/extensions/back/MatMulNormalizer_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
"""
Copyright (C) 2018-2020 Intel Corporation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

import unittest
from argparse import Namespace

from generator import generate, generator

from extensions.back.MatMulNormalizer import SmartReshape_HC_Reshape_MatMul
from extensions.ops.MatMul import MatMul
from mo.front.common.partial_infer.utils import int64_array
from mo.ops.reshape import Reshape
from mo.utils.ir_engine.compare_graphs import compare_graphs
from mo.utils.unittest.graph import build_graph, regular_op_with_shaped_data, const_with_data, \
result, connect
from mo.utils.unittest.graph import regular_op_with_empty_data as op_with_empty_data


@generator
class SmartReshape_HC_Reshape_MatMulTest(unittest.TestCase):
@generate(
*[
([1, 20, 30], [30, 40], [20, -1], False, False, [-1, 30]),
([1, 20, 30], [40, 30], [20, -1], False, True, [-1, 30]),
([1, 30, 20], [30, 40], [-1, 20], True, False, [30, -1]),
([1, 30, 20], [40, 30], [-1, 20], True, True, [30, -1]),
]
)
def test_reshape_on_the_A_input(self,
in1_shape, in2_shape, reshape_pattern, transpose_a, transpose_b, updated_pattern):
nodes = {
**regular_op_with_shaped_data('in_1', in1_shape, dict(type='Parameter', op='Parameter')),
**regular_op_with_shaped_data('in_2', in2_shape, dict(type='Parameter', op='Parameter')),
**const_with_data('dim', int64_array(reshape_pattern)),
**op_with_empty_data('reshape',
dict(type='Reshape', op='Reshape', infer=Reshape.infer, need_shape_inference=True)),
**op_with_empty_data('matmul',
dict(type='MatMul', op='MatMul', infer=MatMul.infer, need_shape_inference=True,
transpose_a=transpose_a, transpose_b=transpose_b, dim_attrs={})),
**result(),
}
edges = [
*connect('in_1:0', '0:reshape'),
*connect('dim:0', '1:reshape'),
*connect('reshape:0', '0:matmul'),
*connect('in_2:0', '1:matmul'),
*connect('matmul:0', 'output'),
]
graph = build_graph(nodes_attrs=nodes, edges=edges, cli=Namespace(static_shape=True))
graph.clean_up()
SmartReshape_HC_Reshape_MatMul().find_and_replace_pattern(graph)
graph.clean_up()

graph_ref = build_graph(nodes_attrs=nodes, edges=edges, update_attributes={
'dim': {'value': int64_array(updated_pattern)}, 'dim_d': {'value': int64_array(updated_pattern)}})
graph_ref.clean_up()

(flag, resp) = compare_graphs(graph, graph_ref, 'output', check_op_attrs=True)
self.assertTrue(flag, resp)

@generate(*[
([20, 30], [1, 30, 40], [-1, 40], False, False, [30, -1]),
([20, 30], [1, 40, 30], [40, -1], False, True, [-1, 30]),
([30, 20], [1, 30, 40], [-1, 40], True, False, [30, -1]),
([30, 20], [1, 40, 30], [40, -1], True, True, [-1, 30]),
])
def test_reshape_on_the_B_input(self,
in1_shape, in2_shape, reshape_pattern, transpose_a, transpose_b, updated_pattern):
nodes = {
**regular_op_with_shaped_data('in_1', in1_shape, dict(type='Parameter', op='Parameter')),
**regular_op_with_shaped_data('in_2', in2_shape, dict(type='Parameter', op='Parameter')),
**const_with_data('dim', int64_array(reshape_pattern)),
**op_with_empty_data('reshape',
dict(type='Reshape', op='Reshape', infer=Reshape.infer, need_shape_inference=True)),
**op_with_empty_data('matmul',
dict(type='MatMul', op='MatMul', infer=MatMul.infer, need_shape_inference=True,
transpose_a=transpose_a, transpose_b=transpose_b, dim_attrs={})),
**result(),
}
edges = [
*connect('in_1:0', '0:matmul'),
*connect('in_2:0', '0:reshape'),
*connect('dim:0', '1:reshape'),
*connect('reshape:0', '1:matmul'),
*connect('matmul:0', 'output'),
]
graph = build_graph(nodes_attrs=nodes, edges=edges, cli=Namespace(static_shape=True))
graph.clean_up()
SmartReshape_HC_Reshape_MatMul().find_and_replace_pattern(graph)
graph.clean_up()

graph_ref = build_graph(nodes_attrs=nodes, edges=edges, update_attributes={
'dim': {'value': int64_array(updated_pattern)}, 'dim_d': {'value': int64_array(updated_pattern)}})
graph_ref.clean_up()

(flag, resp) = compare_graphs(graph, graph_ref, 'output', check_op_attrs=True)
self.assertTrue(flag, resp)
2 changes: 1 addition & 1 deletion model-optimizer/mo/front/common/partial_infer/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ def assign_dims_to_weights(node, spatial, input_channel, output_channel=None, di
node['spatial_dims'] = np.array(spatial, dtype=np.int64)
node['input_channel_dim'] = np.array(input_channel, dtype=np.int64)
node['output_channel_dim'] = np.array(output_channel, dtype=np.int64)
if 'input_channel_dim' not in node['dim_attrs']:
if 'dim_attrs' in node and 'input_channel_dim' not in node['dim_attrs']:
node['dim_attrs'].append('input_channel_dim')
node['dims_number'] = dims_number

Expand Down