Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Extend dynamic shape support for ops which use auto padding mode #1432

Merged
merged 4 commits into from
Aug 10, 2020
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 35 additions & 21 deletions ngraph/src/ngraph/op/avg_pool.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -93,39 +93,53 @@ void op::v1::AvgPool::validate_and_infer_types()
}

const PartialShape& arg_shape = get_input_partial_shape(0);

if (m_auto_pad == PadType::SAME_UPPER || m_auto_pad == PadType::SAME_LOWER)
auto output_shape = PartialShape::dynamic();
if (arg_shape.rank().is_static())
{
if (arg_shape.is_static())
output_shape = std::vector<Dimension>(arg_shape.rank().get_length(), Dimension::dynamic());
if (arg_shape.rank().get_length() > 1)
{
output_shape[0] = arg_shape[0]; // batch size
}
if (arg_shape.rank().get_length() > 2)
{
CoordinateDiff pads_end, pads_begin;
infer_auto_padding(arg_shape.to_shape(),
m_kernel,
m_strides,
Strides(m_kernel.size(), 1), // No dilation
m_auto_pad,
pads_end,
pads_begin);
m_pads_end = Shape(pads_end.begin(), pads_end.end());
m_pads_begin = Shape(pads_begin.begin(), pads_begin.end());
output_shape[1] = arg_shape[1]; // channel size
}
}

bool update_auto_padding_succeed = true;
if (m_auto_pad == PadType::SAME_UPPER || m_auto_pad == PadType::SAME_LOWER)
{
CoordinateDiff pads_end, pads_begin;
update_auto_padding_succeed =
try_apply_auto_padding(arg_shape,
m_kernel,
m_strides,
Strides(m_kernel.size(), 1), // No dilation
m_auto_pad,
pads_end,
pads_begin);
m_pads_end = Shape(pads_end.begin(), pads_end.end());
m_pads_begin = Shape(pads_begin.begin(), pads_begin.end());
}

// infer_batched_forward_pooling wants CoordinateDiffs for these, while the pooling ops for
// now still take Shape (no negative padding).
CoordinateDiff pads_begin(m_pads_begin.begin(), m_pads_begin.end());
CoordinateDiff pads_end(m_pads_end.begin(), m_pads_end.end());

set_output_type(0,
get_input_element_type(0),
infer_batched_pooling_forward(this,
arg_shape,
pads_begin,
pads_end,
m_kernel,
m_strides,
!m_exclude_pad,
m_rounding_type == op::RoundingType::CEIL));
update_auto_padding_succeed
? infer_batched_pooling_forward(this,
arg_shape,
pads_begin,
pads_end,
m_kernel,
m_strides,
!m_exclude_pad,
m_rounding_type == op::RoundingType::CEIL)
: output_shape);
}

const Shape& op::v1::AvgPool::get_kernel() const
Expand Down
40 changes: 31 additions & 9 deletions ngraph/src/ngraph/op/binary_convolution.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,23 @@ void op::v1::BinaryConvolution::validate_and_infer_types()
const PartialShape& filters_shape = get_input_partial_shape(1);
element::Type filters_et = get_input_element_type(1);

PartialShape result_shape = PartialShape::dynamic();
if (data_batch_shape.rank().is_static())
{
result_shape =
std::vector<Dimension>(data_batch_shape.rank().get_length(), Dimension::dynamic());

if (data_batch_shape.rank().get_length() > 1)
{
result_shape[0] = data_batch_shape[0]; // batch size
}

if (filters_shape.rank().is_static() && filters_shape.rank().get_length() > 1)
{
result_shape[1] = filters_shape[0]; // filter channel size
}
}

if (m_strides.size() == 0)
{
m_strides = conv_default_strides(this, data_batch_shape, filters_shape);
Expand All @@ -99,23 +116,28 @@ void op::v1::BinaryConvolution::validate_and_infer_types()

if (m_auto_pad == PadType::SAME_UPPER || m_auto_pad == PadType::SAME_LOWER)
{
if (data_batch_shape.is_static() && filters_shape.is_static())
bool auto_padding_applied = false;
if (filters_shape.is_static())
{
m_pads_begin.clear();
m_pads_end.clear();
auto filter_shape = filters_shape.to_shape();
filter_shape.erase(filter_shape.begin(), filter_shape.begin() + 2); // Remove {O,I}
infer_auto_padding(data_batch_shape.to_shape(),
filter_shape,
m_strides,
m_dilations,
m_auto_pad,
m_pads_end,
m_pads_begin);
auto_padding_applied = try_apply_auto_padding(data_batch_shape,
filter_shape,
m_strides,
m_dilations,
m_auto_pad,
m_pads_end,
m_pads_begin);
}
if (!auto_padding_applied)
{
set_output_type(0, data_batch_et, result_shape);
return;
}
}

PartialShape result_shape;
result_shape = infer_convolution_forward(this,
data_batch_shape,
Strides(data_batch_shape.rank().get_length() - 2, 1),
Expand Down
116 changes: 69 additions & 47 deletions ngraph/src/ngraph/op/deformable_convolution.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -71,44 +71,6 @@ void op::v1::DeformableConvolution::validate_and_infer_types()
element::Type deformable_values_et = get_input_element_type(1);
element::Type filters_et = get_input_element_type(2);

if (m_strides.size() == 0)
{
m_strides = conv_default_strides(this, data_batch_shape, filters_shape);
}

if (m_dilations.size() == 0)
{
m_dilations = conv_default_strides(this, data_batch_shape, filters_shape);
}

if (m_pads_begin.size() == 0)
{
m_pads_begin = conv_default_padding(this, data_batch_shape, filters_shape);
}

if (m_pads_end.size() == 0)
{
m_pads_end = conv_default_padding(this, data_batch_shape, filters_shape);
}

if (m_auto_pad == PadType::SAME_UPPER || m_auto_pad == PadType::SAME_LOWER)
{
if (data_batch_shape.is_static() && filters_shape.is_static())
{
m_pads_begin.clear();
m_pads_end.clear();
auto filter_shape = filters_shape.to_shape();
filter_shape.erase(filter_shape.begin(), filter_shape.begin() + 2); // Remove {O,I}
infer_auto_padding(data_batch_shape.to_shape(),
filter_shape,
m_strides,
m_dilations,
m_auto_pad,
m_pads_end,
m_pads_begin);
}
}

if (deformable_values_shape.rank().is_static())
{
NODE_VALIDATION_CHECK(
Expand Down Expand Up @@ -160,15 +122,75 @@ void op::v1::DeformableConvolution::validate_and_infer_types()
filters_et,
").");

const PartialShape result_shape =
infer_convolution_forward(this,
data_batch_shape,
Strides(m_strides.size(), 1), // dummy data dilations
m_pads_begin,
m_pads_end,
filters_shape,
m_strides,
m_dilations);
PartialShape result_shape = PartialShape::dynamic();
if (data_batch_shape.rank().is_static())
{
result_shape =
std::vector<Dimension>(data_batch_shape.rank().get_length(), Dimension::dynamic());

if (data_batch_shape.rank().get_length() > 1)
{
result_shape[0] = data_batch_shape[0]; // batch size
}

if (filters_shape.rank().is_static() && filters_shape.rank().get_length() > 1)
{
result_shape[1] = filters_shape[0]; // filter channel size
}
}

if (m_strides.size() == 0)
{
m_strides = conv_default_strides(this, data_batch_shape, filters_shape);
}

if (m_dilations.size() == 0)
{
m_dilations = conv_default_strides(this, data_batch_shape, filters_shape);
}

if (m_pads_begin.size() == 0)
{
m_pads_begin = conv_default_padding(this, data_batch_shape, filters_shape);
}

if (m_pads_end.size() == 0)
{
m_pads_end = conv_default_padding(this, data_batch_shape, filters_shape);
}

if (m_auto_pad == PadType::SAME_UPPER || m_auto_pad == PadType::SAME_LOWER)
{
bool auto_padding_applied = false;
if (filters_shape.is_static())
{
m_pads_begin.clear();
m_pads_end.clear();
auto filter_shape = filters_shape.to_shape();
filter_shape.erase(filter_shape.begin(), filter_shape.begin() + 2); // Remove {O,I}
auto_padding_applied = try_apply_auto_padding(data_batch_shape,
filter_shape,
m_strides,
m_dilations,
m_auto_pad,
m_pads_end,
m_pads_begin);
}
if (!auto_padding_applied)
{
set_output_type(0, data_batch_et, result_shape);
return;
}
}

result_shape = infer_convolution_forward(this,
data_batch_shape,
Strides(m_strides.size(), 1), // dummy data dilations
m_pads_begin,
m_pads_end,
filters_shape,
m_strides,
m_dilations);

set_output_type(0, result_et, result_shape);
}
Expand Down
3 changes: 3 additions & 0 deletions ngraph/test/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -106,8 +106,10 @@ set(SRC
tensor.cpp
type_prop/any.cpp
type_prop/assign.cpp
type_prop/avg_pool.cpp
type_prop/batch_norm.cpp
type_prop/batch_to_space.cpp
type_prop/binary_convolution.cpp
type_prop/binary_elementwise.cpp
type_prop/broadcast.cpp
type_prop/bucketize.cpp
Expand All @@ -117,6 +119,7 @@ set(SRC
type_prop/convert.cpp
type_prop/convolution.cpp
type_prop/ctc_loss.cpp
type_prop/deformable_convolution.cpp
type_prop/deformable_psroi_pooling.cpp
type_prop/depth_to_space.cpp
type_prop/dequantize.cpp
Expand Down
105 changes: 105 additions & 0 deletions ngraph/test/type_prop/avg_pool.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
//*****************************************************************************
// Copyright 2017-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************

#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/type_prop.hpp"

using namespace std;
using namespace ngraph;

TEST(type_prop, avg_pool_auto_padding)
{
const PartialShape arg_shape{1, 3, 32, 32};
const Strides strides{1, 1};
const Shape pads_begin{0, 0};
const Shape pads_end{0, 0};
const Shape kernel_shape{2, 2};
const bool exclude_pad = false;
const auto rounding_mode = op::RoundingType::FLOOR;
const auto auto_pad = op::PadType::SAME_LOWER;

auto arg = make_shared<op::Parameter>(element::f32, arg_shape);
auto mp = make_shared<op::v1::AvgPool>(
arg, strides, pads_begin, pads_end, kernel_shape, exclude_pad, rounding_mode, auto_pad);

ASSERT_TRUE(mp->get_output_partial_shape(0).same_scheme({1, 3, 32, 32}));
ASSERT_EQ(mp->get_pads_begin(), (Shape{1, 1}));
ASSERT_EQ(mp->get_pads_end(), (Shape{0, 0}));
}

TEST(type_prop, avg_pool_auto_padding_nc_dims_dynamic_same_lower)
{
const PartialShape arg_shape{Dimension::dynamic(), Dimension::dynamic(), 32, 32};
const Strides strides{1, 1};
const Shape pads_begin{0, 0};
const Shape pads_end{0, 0};
const Shape kernel_shape{2, 2};
const bool exclude_pad = true;
const auto rounding_mode = op::RoundingType::FLOOR;
const auto auto_pad = op::PadType::SAME_LOWER;

auto arg = make_shared<op::Parameter>(element::f32, arg_shape);
auto mp = make_shared<op::v1::AvgPool>(
arg, strides, pads_begin, pads_end, kernel_shape, exclude_pad, rounding_mode, auto_pad);

ASSERT_TRUE(mp->get_output_partial_shape(0).same_scheme(
{Dimension::dynamic(), Dimension::dynamic(), 32, 32}));
ASSERT_EQ(mp->get_pads_begin(), (Shape{1, 1}));
ASSERT_EQ(mp->get_pads_end(), (Shape{0, 0}));
}

TEST(type_prop, avg_pool_auto_padding_nc_dims_dynamic_same_upper)
{
const PartialShape arg_shape{Dimension::dynamic(), Dimension::dynamic(), 32, 32};
const Strides strides{1, 1};
const Shape pads_begin{0, 0};
const Shape pads_end{0, 0};
const Shape kernel_shape{2, 2};
const bool exclude_pad = false;
const auto rounding_mode = op::RoundingType::FLOOR;
const auto auto_pad = op::PadType::SAME_UPPER;

auto arg = make_shared<op::Parameter>(element::f32, arg_shape);
auto mp = make_shared<op::v1::AvgPool>(
arg, strides, pads_begin, pads_end, kernel_shape, exclude_pad, rounding_mode, auto_pad);

ASSERT_TRUE(mp->get_output_partial_shape(0).same_scheme(
{Dimension::dynamic(), Dimension::dynamic(), 32, 32}));
ASSERT_EQ(mp->get_pads_begin(), (Shape{0, 0}));
ASSERT_EQ(mp->get_pads_end(), (Shape{1, 1}));
}

TEST(type_prop, avg_pool_auto_padding_spatial_dims_dynamic)
{
const PartialShape arg_shape{1, 3, 32, Dimension::dynamic()};
const Strides strides{1, 1};
const Shape pads_begin{0, 0};
const Shape pads_end{0, 0};
const Shape kernel_shape{2, 2};
const bool exclude_pad = true;
const auto rounding_mode = op::RoundingType::FLOOR;
const auto auto_pad = op::PadType::SAME_LOWER;

auto arg = make_shared<op::Parameter>(element::f32, arg_shape);
auto mp = make_shared<op::v1::AvgPool>(
arg, strides, pads_begin, pads_end, kernel_shape, exclude_pad, rounding_mode, auto_pad);

ASSERT_TRUE(mp->get_output_partial_shape(0).same_scheme(
{1, 3, Dimension::dynamic(), Dimension::dynamic()}));
ASSERT_EQ(mp->get_pads_begin(), (Shape{}));
ASSERT_EQ(mp->get_pads_end(), (Shape{}));
}
Loading