-
Notifications
You must be signed in to change notification settings - Fork 2.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TF FE] Add layer test for tf.raw_ops.RaggedTensorToTensor (#23041)
**Details:** Add layer test for tf.raw_ops.RaggedTensorToTensor **Ticket:** 132910 --------- Signed-off-by: Kazantsev, Roman <[email protected]>
- Loading branch information
Showing
1 changed file
with
62 additions
and
0 deletions.
There are no files selected for viewing
62 changes: 62 additions & 0 deletions
62
tests/layer_tests/tensorflow_tests/test_tf_RaggedTensorToTensor.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
# Copyright (C) 2022-2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import numpy as np | ||
import pytest | ||
import tensorflow as tf | ||
from common.tf_layer_test_class import CommonTFLayerTest | ||
|
||
rng = np.random.default_rng() | ||
|
||
|
||
class TestRaggedTensorToTensor(CommonTFLayerTest): | ||
def _prepare_input(self, inputs_info): | ||
assert 'values:0' in inputs_info, "Test error: inputs_info must contain `values`" | ||
values_shape = inputs_info['values:0'] | ||
inputs_data = {} | ||
if np.issubdtype(self.input_type, np.floating): | ||
inputs_data['values:0'] = rng.uniform(-5.0, 5.0, values_shape).astype(self.values_type) | ||
elif np.issubdtype(self.input_type, np.signedinteger): | ||
inputs_data['values:0'] = rng.integers(-8, 8, values_shape).astype(self.values_type) | ||
else: | ||
inputs_data['values:0'] = rng.integers(0, 8, values_shape).astype(self.values_type) | ||
return inputs_data | ||
|
||
def create_ragged_tensor_to_tensor_net(self, shape_type, shape_value, values_shape, values_type, default_value, | ||
row_partition_tensors, row_partition_types): | ||
self.values_type = values_type | ||
tf.compat.v1.reset_default_graph() | ||
|
||
# Create the graph and model | ||
with tf.compat.v1.Session() as sess: | ||
values = tf.compat.v1.placeholder(values_type, values_shape, 'values') | ||
shape = tf.constant(shape_value, dtype=shape_type) | ||
default_value = tf.constant(default_value, dtype=values_type) | ||
tf.raw_ops.RaggedTensorToTensor(shape=shape, values=values, default_value=default_value, | ||
row_partition_tensors=row_partition_tensors, | ||
row_partition_types=row_partition_types) | ||
tf.compat.v1.global_variables_initializer() | ||
tf_net = sess.graph_def | ||
|
||
return tf_net, None | ||
|
||
@pytest.mark.parametrize('shape_type', [np.int32, np.int64]) | ||
@pytest.mark.parametrize('shape_value', [[4, 8], [-1, 64]]) | ||
@pytest.mark.parametrize('values_shape', [[40], [100]]) | ||
@pytest.mark.parametrize('values_type', [np.float32, np.int32, np.int64]) | ||
@pytest.mark.parametrize('default_value', [-1, 0]) | ||
@pytest.mark.parametrize('row_partition_tensors', [[[0, 1, 6, 8, 15, 20, 21]]]) | ||
@pytest.mark.parametrize('row_partition_types', [["ROW_SPLITS"]]) | ||
@pytest.mark.precommit_tf_fe | ||
@pytest.mark.nightly | ||
@pytest.mark.xfail(reason='132675 - Add support of RaggedTensorToTensor') | ||
def test_ragged_tensor_to_tensor(self, shape_type, shape_value, values_shape, values_type, default_value, | ||
row_partition_tensors, row_partition_types, | ||
ie_device, precision, ir_version, temp_dir, use_legacy_frontend): | ||
self._test(*self.create_ragged_tensor_to_tensor_net(shape_type=shape_type, shape_value=shape_value, | ||
values_shape=values_shape, values_type=values_type, | ||
default_value=default_value, | ||
row_partition_tensors=row_partition_tensors, | ||
row_partition_types=row_partition_types), | ||
ie_device, precision, ir_version, temp_dir=temp_dir, | ||
use_legacy_frontend=use_legacy_frontend) |