Skip to content

Commit

Permalink
[TFLite] Custom attribute reading and While operation support (#17932)
Browse files Browse the repository at this point in the history
* Custom attribute reading and While operation support

* Rearanges FLATBUFFERS_LOCALE_INDEPENDENT setting

* Style

* Make flatbuffers code as version independent as possible

* Comments addressed
  • Loading branch information
Evgenya Stepyreva authored Jun 12, 2023
1 parent 1588a33 commit dd02a0f
Show file tree
Hide file tree
Showing 14 changed files with 416 additions and 114 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@ namespace ov {
namespace frontend {
namespace tensorflow_lite {

using SubGraphFuncs = std::vector<std::function<std::shared_ptr<ov::Model>()>>;

/// Keep necessary data for a single node in the original FW graph to facilitate
/// conversion process in the rules code.
class TENSORFLOW_LITE_API NodeContext : public ov::frontend::NodeContext {
Expand All @@ -20,43 +22,76 @@ class TENSORFLOW_LITE_API NodeContext : public ov::frontend::NodeContext {
NodeContext(const std::shared_ptr<DecoderBase>& decoder, const OutputVector& inputs)
: ov::frontend::NodeContext(decoder->get_op_type()),
m_decoder(decoder),
m_inputs(inputs) {}
m_inputs(inputs),
m_subgraph_functions(m_empty_vector) {}

NodeContext(const std::shared_ptr<DecoderBase>& decoder,
const OutputVector& inputs,
const SubGraphFuncs& subgraph_functions)
: ov::frontend::NodeContext(decoder->get_op_type()),
m_decoder(decoder),
m_inputs(inputs),
m_subgraph_functions(subgraph_functions) {}

/// \brief Returns a number of inputs
size_t get_input_size() const override {
return m_inputs.size();
}

/// \brief Returns exactly one input with a given idx; throws if there is no inputs or
/// there are more than one input
Output<Node> get_input(int port_index) const override {
return m_inputs.at(port_index);
}

/// Detects if there is at least one input attached with a given name
bool has_input(const size_t& port_index) const {
return port_index < m_inputs.size();
}

Output<Node> get_input(int port_index) const override {
return m_inputs.at(port_index);
/// \brief Get a node name
const std::string& get_name() const override {
return m_decoder->get_op_name();
}

OutputVector get_inputs() const {
return m_inputs;
}

size_t get_input_size() const override {
return m_inputs.size();
/// \brief Returns node attribute by name as ov::Any.
ov::Any get_attribute_as_any(const std::string& name) const override {
return m_decoder->get_attribute(name);
}

/// \brief Get a node name
const std::string& get_name() const override {
return m_decoder->get_op_name();
/// \brief Returns the number of sub-graphs that can be enumerated with get_subgraph
size_t get_subgraph_size() const override {
return m_subgraph_functions.size();
}

/// \brief Returns subgraph converted on demand by the first access
/// If there is no query for specific sub-graph it shouldn't be converted
/// idx should be in range 0..get_subgraph_size()-1
std::shared_ptr<Model> get_subgraph(int idx) const override {
int size = static_cast<int>(get_subgraph_size());
FRONT_END_GENERAL_CHECK(idx >= 0 && idx < size,
"Incorrect subgraph idx ",
idx,
". There are only ",
get_subgraph_size(),
"subgraphs currently");
return m_subgraph_functions[idx]();
}

/// \brief Get a decoder
std::shared_ptr<DecoderBase> get_decoder() const {
return m_decoder;
}

ov::Any get_attribute_as_any(const std::string& name) const override {
auto res = m_decoder->get_attribute(name);
return res;
}

private:
std::shared_ptr<DecoderBase> m_decoder;
const OutputVector& m_inputs;
const SubGraphFuncs& m_subgraph_functions;
const SubGraphFuncs m_empty_vector = {};
};

using CreatorFunction = std::function<ov::OutputVector(const ov::frontend::tensorflow_lite::NodeContext&)>;
Expand Down
36 changes: 33 additions & 3 deletions src/frontends/tensorflow_lite/src/decoder_flatbuffer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,11 @@

#include "decoder_flatbuffer.h"

#ifdef FLATBUFFERS_LOCALE_INDEPENDENT
# undef FLATBUFFERS_LOCALE_INDEPENDENT
#endif
#define FLATBUFFERS_LOCALE_INDEPENDENT 0
#include "flatbuffers/flexbuffers.h"
#include "schema_generated.h"
#include "utils.hpp"

Expand Down Expand Up @@ -87,9 +92,34 @@ std::shared_ptr<ov::frontend::tensorflow_lite::TensorLitePlace> DecoderFlatBuffe
ov::frontend::tensorflow_lite::get_ov_type(tensor->type()),
names,
ov::frontend::tensorflow_lite::get_quantization(tensor->quantization()),
tensor_info.input_idx,
tensor_info.output_idx,
(tensor_info.buffer->data() ? tensor_info.buffer->data()->data() : nullptr));
(tensor_info.buffer && tensor_info.buffer->data() ? tensor_info.buffer->data()->data() : nullptr));
}

ov::Any get_value_as_ov_any(const flexbuffers::Reference& value) {
#define CASE_MACRO(fbt, as_stmt) \
case flexbuffers::fbt: \
return {value.as_stmt()};
switch (value.GetType()) {
CASE_MACRO(FBT_INT, AsInt32)
CASE_MACRO(FBT_INDIRECT_INT, AsInt32)
CASE_MACRO(FBT_UINT, AsUInt32)
CASE_MACRO(FBT_INDIRECT_UINT, AsUInt32)
CASE_MACRO(FBT_FLOAT, AsFloat)
CASE_MACRO(FBT_INDIRECT_FLOAT, AsFloat)
CASE_MACRO(FBT_STRING, AsString)
CASE_MACRO(FBT_BOOL, AsBool)
default:
return {};
}
return {};
}

ov::Any DecoderFlatBuffer::get_attribute(const std::string& name) const {
const auto opts = m_node_def->custom_options();
if (opts == nullptr)
return {};
const flexbuffers::Map& m = flexbuffers::GetRoot(opts->Data(), opts->size()).AsMap();
return get_value_as_ov_any(m[name]);
}

} // namespace tensorflow_lite
Expand Down
26 changes: 21 additions & 5 deletions src/frontends/tensorflow_lite/src/decoder_flatbuffer.h
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ namespace tensorflow_lite {
class TensorLitePlace;
struct TensorInfo;


class DecoderFlatBuffer : public ov::frontend::DecoderBase {
public:
explicit DecoderFlatBuffer(const tflite::Operator* node_def,
Expand All @@ -43,9 +44,7 @@ class DecoderFlatBuffer : public ov::frontend::DecoderBase {
return (opts->*member)();
}

ov::Any get_attribute(const std::string& name) const override {
return {};
}
ov::Any get_attribute(const std::string& name) const override;

size_t get_input_size() const override;
size_t get_output_size() const;
Expand All @@ -68,15 +67,32 @@ class DecoderFlatBuffer : public ov::frontend::DecoderBase {
std::shared_ptr<ov::frontend::tensorflow_lite::TensorLitePlace> decode_output_tensor(size_t idx,
const ov::frontend::InputModel& model) const;

private:
protected:
std::shared_ptr<ov::frontend::tensorflow_lite::TensorLitePlace> decode_tensor(
const ov::frontend::tensorflow_lite::TensorInfo& tensor_info, const InputModel& model) const;
const ov::frontend::tensorflow_lite::TensorInfo& tensor_info, const ov::frontend::InputModel& model) const;

const tflite::Operator* m_node_def;
std::string m_type, m_name;
std::map<size_t, ov::frontend::tensorflow_lite::TensorInfo> m_input_info, m_output_info;
};

class DecoderFlatBufferTensors : public DecoderFlatBuffer {
public:
DecoderFlatBufferTensors(const TensorInfo &info, int64_t input_idx, int64_t output_idx) :
DecoderFlatBuffer(nullptr, "", "", {}, {}), m_info{info}, m_input_idx(input_idx), m_output_idx(output_idx) {};

std::shared_ptr<ov::frontend::tensorflow_lite::TensorLitePlace> decode_tensor(const ov::frontend::InputModel& model) const {
auto tensor = DecoderFlatBuffer::decode_tensor(m_info, model);
tensor->set_input_index(m_input_idx);
tensor->set_output_index(m_output_idx);
return tensor;
}

private:
TensorInfo m_info;
int64_t m_input_idx, m_output_idx;
};

} // namespace tensorflow_lite
} // namespace frontend
} // namespace ov
21 changes: 20 additions & 1 deletion src/frontends/tensorflow_lite/src/frontend.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,22 @@ void FrontEnd::translate_graph(const InputModel::Ptr& model,
const auto& model_lite = std::dynamic_pointer_cast<ov::frontend::tensorflow_lite::InputModel>(model);
FRONT_END_GENERAL_CHECK(model_lite, "nullptr for InputModel is given for translation into OV Model");

auto subgraphs_as_input_models = model_lite->get_subgraphs();
auto input_to_ov_model = [&](const std::shared_ptr<ov::frontend::tensorflow_lite::InputModel>& in_model) {
auto simple_lambda = [&]() -> std::shared_ptr<ov::Model> {
std::shared_ptr<ov::Model> model;
if (in_model)
translate_graph(in_model, fail_fast, no_conversion, model);
return model;
};
return simple_lambda;
};
std::vector<std::function<std::shared_ptr<ov::Model>()>> submodel_translation_functions;
submodel_translation_functions.reserve(subgraphs_as_input_models.size());
for (const auto& subgraph : subgraphs_as_input_models) {
submodel_translation_functions.push_back(input_to_ov_model(subgraph));
}

const auto& translate_map =
no_conversion ? ov::frontend::tensorflow_lite::TranslatorDictionaryType{} : m_op_translators;

Expand Down Expand Up @@ -220,7 +236,7 @@ void FrontEnd::translate_graph(const InputModel::Ptr& model,
FRONT_END_OP_CONVERSION_CHECK(translate_map.count(decoder->get_op_type()),
"No translator found for " + decoder->get_op_type() + " node.");
auto op_fun = &(translate_map.at(decoder->get_op_type()));
ov::frontend::tensorflow_lite::NodeContext node_context(decoder, inputs);
ov::frontend::tensorflow_lite::NodeContext node_context(decoder, inputs, submodel_translation_functions);
ov_outputs = (*op_fun)(node_context);
} catch (...) {
if (fail_fast) {
Expand Down Expand Up @@ -250,6 +266,9 @@ void FrontEnd::translate_graph(const InputModel::Ptr& model,
tensor != nullptr,
"Inputs of ov::frontend::tensorflow_lite::InputModel must be TensorLitePlace instances");
const auto name = tensor->get_names()[0];
if (!all_tensor_values.count(name)) {
continue;
}
const auto& output_value = all_tensor_values[name];
const auto& result = std::make_shared<ov::opset1::Result>(output_value);
auto input = result->output(0);
Expand Down
132 changes: 80 additions & 52 deletions src/frontends/tensorflow_lite/src/graph_iterator_flatbuffer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -25,63 +25,91 @@ GraphIteratorFlatBuffer::GraphIteratorFlatBuffer(const std::string& path) {
model_file.close();

m_model = tflite::GetModel(m_data.data());
const auto subgraphs = m_model->subgraphs();
FRONT_END_GENERAL_CHECK(subgraphs->size() == 1,
"Number of sub-graphs in the model is ",
subgraphs->size(),
". Supported number of sub-graphs is 1.");
const auto graph = *subgraphs->begin();
const auto operators = graph->operators();
m_nodes = {operators->begin(), operators->end()};
auto sub_graphs = m_model->subgraphs();
m_subgraphs = {sub_graphs->begin(), sub_graphs->end()};
m_graph = m_subgraphs[0];
const auto operators = m_graph->operators();
auto operators_vec = std::vector<const tflite::Operator*>{operators->begin(), operators->end()};

m_nodes.assign(operators_vec.begin(), operators_vec.end());
auto outputs = m_graph->outputs();
auto inputs = m_graph->inputs();
m_nodes.insert(m_nodes.begin(), outputs->begin(), outputs->end());
m_nodes.insert(m_nodes.begin(), inputs->begin(), inputs->end());
}

size_t GraphIteratorFlatBuffer::get_subgraph_size() const {
return m_subgraphs.size();
}

std::shared_ptr<GraphIteratorFlatBuffer> GraphIteratorFlatBuffer::get_subgraph(const size_t& idx) const {
FRONT_END_GENERAL_CHECK(m_subgraphs.size() > idx, "There is no subgraph with idx ", idx);
auto iterator = std::make_shared<GraphIteratorFlatBuffer>();
iterator->node_index = 0;
iterator->m_model = m_model;
iterator->m_subgraphs = {}; // TODO: check if we need to pass all sub-graphs here (while in a while situation)
iterator->m_graph = m_subgraphs[idx];
const auto operators = iterator->m_graph->operators();
auto operators_vec = std::vector<const tflite::Operator*>{operators->begin(), operators->end()};
iterator->m_nodes.assign(operators_vec.begin(), operators_vec.end());
auto outputs = iterator->m_graph->outputs();
auto inputs = iterator->m_graph->inputs();
iterator->m_nodes.insert(iterator->m_nodes.begin(), outputs->begin(), outputs->end());
iterator->m_nodes.insert(iterator->m_nodes.begin(), inputs->begin(), inputs->end());
return iterator;
}

std::shared_ptr<DecoderFlatBuffer> GraphIteratorFlatBuffer::get_decoder() const {
auto inputs_vec = (*m_model->subgraphs()->begin())->inputs();
auto outputs_vec = (*m_model->subgraphs()->begin())->outputs();
auto inputs = std::set<int32_t>{inputs_vec->begin(), inputs_vec->end()};
auto outputs = std::set<int32_t>{outputs_vec->begin(), outputs_vec->end()};

auto buffers = m_model->buffers();
auto tensors = m_model->subgraphs()->begin()->tensors();

std::map<size_t, TensorInfo> input_info = {}, output_info = {};
size_t i = 0;
for (auto input : *m_nodes[node_index]->inputs()) {
if (input == -1) {
continue;
auto any_item = m_nodes[node_index];
bool is_op = any_item.is<const tflite::Operator*>();
FRONT_END_GENERAL_CHECK(is_op || any_item.is<int32_t>());
auto tensors = m_graph->tensors();

if (is_op) {
auto node = m_nodes[node_index].as<const tflite::Operator*>();
auto buffers = m_model->buffers();

std::map<size_t, TensorInfo> input_info = {}, output_info = {};
size_t i = 0;
for (auto input : *node->inputs()) {
if (input == -1)
continue;
auto buffer = (*buffers)[(*tensors)[input]->buffer()];
auto tensor = (*tensors)[input];
input_info[i++] = TensorInfo{tensor, buffer};
}
auto buffer = (*buffers)[(*tensors)[input]->buffer()];
auto is_input = inputs.find(input) != inputs.end();
int64_t input_idx =
!is_input ? -1 : std::find(inputs_vec->begin(), inputs_vec->end(), input) - inputs_vec->begin();
auto is_output = outputs.find(input) != outputs.end();
int64_t output_idx =
!is_output ? -1 : std::find(outputs_vec->begin(), outputs_vec->end(), input) - outputs_vec->begin();
input_info[i++] = TensorInfo{input_idx, output_idx, (*tensors)[input], buffer};
}
i = 0;
// If we have any m_nodes[node_index]->intermediates() than trigger internal smth? no
// put all the info in Decoder as a sub-graph!
i = 0;
for (auto output : *node->outputs()) {
auto buffer = (*buffers)[(*tensors)[output]->buffer()];
auto tensor = (*tensors)[output];
output_info[i++] = TensorInfo{tensor, buffer};
}
auto op_codes = m_model->operator_codes();
auto operator_code = (*op_codes)[node->opcode_index()];
std::string type;
if (operator_code->deprecated_builtin_code() <
tflite::BuiltinOperator::BuiltinOperator_PLACEHOLDER_FOR_GREATER_OP_CODES) {
type = tflite::EnumNamesBuiltinOperator()[operator_code->deprecated_builtin_code()];
} else {
type = tflite::EnumNamesBuiltinOperator()[operator_code->builtin_code()];
}
if (type == "CUSTOM") {
type = operator_code->custom_code()->str();
}
return std::make_shared<DecoderFlatBuffer>(node, type, std::to_string(node_index), input_info, output_info);
} else {
auto tensor_id = m_nodes[node_index].as<int32_t>();
auto tensor = (*tensors)[tensor_id];
auto info = TensorInfo{tensor, nullptr};
auto inputs = m_graph->inputs();
auto outputs = m_graph->outputs();

for (auto output : *m_nodes[node_index]->outputs()) {
auto buffer = (*buffers)[(*tensors)[output]->buffer()];
auto is_output = outputs.find(output) != outputs.end();
auto input_it = std::find(inputs->begin(), inputs->end(), tensor_id);
auto output_it = std::find(outputs->begin(), outputs->end(), tensor_id);
int64_t input_idx =
input_it == inputs->end() ? -1 : static_cast<int64_t>(std::distance(inputs->begin(), input_it));
int64_t output_idx =
!is_output ? -1 : std::find(outputs_vec->begin(), outputs_vec->end(), output) - outputs_vec->begin();
output_info[i++] = TensorInfo{-1, output_idx, (*tensors)[output], buffer};
}
auto op_codes = m_model->operator_codes();
auto operator_code = (*op_codes)[m_nodes[node_index]->opcode_index()];
std::string type;
if (operator_code->deprecated_builtin_code() <
tflite::BuiltinOperator::BuiltinOperator_PLACEHOLDER_FOR_GREATER_OP_CODES) {
type = tflite::EnumNamesBuiltinOperator()[operator_code->deprecated_builtin_code()];
} else {
type = tflite::EnumNamesBuiltinOperator()[operator_code->builtin_code()];
output_it == outputs->end() ? -1 : static_cast<int64_t>(std::distance(outputs->begin(), output_it));
return std::make_shared<DecoderFlatBufferTensors>(info, input_idx, output_idx);
}
return std::make_shared<DecoderFlatBuffer>(m_nodes[node_index],
type,
std::to_string(node_index),
input_info,
output_info);
}
Loading

0 comments on commit dd02a0f

Please sign in to comment.