Skip to content

Commit

Permalink
Test calculation output shape for Broadcast op, relax restrictions fo…
Browse files Browse the repository at this point in the history
…r partially dynamic input data (#1247)
  • Loading branch information
Mateusz Bencer authored Aug 10, 2020
1 parent ffe8599 commit ae48d9d
Show file tree
Hide file tree
Showing 5 changed files with 638 additions and 45 deletions.
44 changes: 32 additions & 12 deletions ngraph/src/ngraph/op/broadcast.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -90,15 +90,21 @@ std::pair<bool, AxisSet> op::v3::Broadcast::get_broadcast_axes() const

namespace
{
PartialShape
get_result_shape_bidirectional(const Node* this_ptr, Shape& arg_shape, Shape& target_shape)
PartialShape get_result_shape_bidirectional(const Node* this_ptr,
const PartialShape& arg_shape,
Shape& target_shape)
{
if (arg_shape.rank().is_dynamic())
{
return PartialShape::dynamic();
}
auto arg_shape_vec = static_cast<std::vector<Dimension>>(arg_shape);
PartialShape result_shape;
// Add left padding to shorter target or argument shape
const auto target_padded_rank = std::max(arg_shape.size(), target_shape.size());
while (arg_shape.size() < target_padded_rank)
const auto target_padded_rank = std::max(arg_shape_vec.size(), target_shape.size());
while (arg_shape_vec.size() < target_padded_rank)
{
arg_shape.insert(arg_shape.begin(), 1);
arg_shape_vec.insert(arg_shape_vec.begin(), 1);
}
while (target_shape.size() < target_padded_rank)
{
Expand All @@ -108,15 +114,28 @@ namespace
result_shape = target_shape;
for (auto i = 0; i < target_shape.size(); ++i)
{
if (arg_shape_vec[i].is_dynamic())
{
if (target_shape[i] == 1)
{
result_shape[i] = Dimension::dynamic();
}
else
{
result_shape[i] = target_shape[i];
}
continue;
}
const size_t arg_shape_dim = arg_shape_vec[i].get_length();
NODE_VALIDATION_CHECK(this_ptr,
arg_shape[i] == 1 || target_shape[i] == 1 ||
arg_shape[i] == target_shape[i],
arg_shape_dim == 1 || target_shape[i] == 1 ||
arg_shape_dim == target_shape[i],
"Broadcast incorrect target shape. Expecting either 1 or ",
arg_shape[i],
arg_shape_dim,
". Got ",
target_shape[i]);

result_shape[i] = std::max(arg_shape[i], target_shape[i]);
result_shape[i] = std::max(arg_shape_dim, target_shape[i]);
}
return result_shape;
}
Expand All @@ -143,9 +162,9 @@ void op::v3::Broadcast::validate_and_infer_types()
auto result_shape = get_output_partial_shape(0);
if (m_mode.m_type == BroadcastType::BIDIRECTIONAL)
{
if (get_input_partial_shape(0).is_static() && get_input_partial_shape(1).is_static())
if (get_input_partial_shape(0).rank().is_static() && get_input_partial_shape(1).is_static())
{
auto arg_shape = get_input_shape(0);
auto arg_shape = get_input_partial_shape(0);

const auto shape_constant =
as_type_ptr<op::v0::Constant>(input_value(1).get_node_shared_ptr());
Expand Down Expand Up @@ -196,7 +215,8 @@ bool op::v3::Broadcast::evaluate(const HostTensorVector& outputs,
{
auto arg_shape = inputs[0]->get_shape();
Shape target_shape = op::util::BroadcastBase::get_target_shape(inputs[1]);
PartialShape result_shape = get_result_shape_bidirectional(this, arg_shape, target_shape);
PartialShape result_shape =
get_result_shape_bidirectional(this, PartialShape{arg_shape}, target_shape);
auto pair_broadcast_axes =
get_broadcast_axes_bidirectional(arg_shape, result_shape.to_shape());
return op::util::BroadcastBase::evaluate_broadcast(
Expand Down
122 changes: 96 additions & 26 deletions ngraph/src/ngraph/op/util/broadcast_base.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -47,35 +47,79 @@ op::util::BroadcastBase::BroadcastBase(const Output<Node>& arg,
{
}

PartialShape op::util::BroadcastBase::get_result_shape_numpy_pdpd(
const Shape& arg0_shape,
PartialShape op::util::BroadcastBase::get_result_shape_pdpd(
const PartialShape& arg0_shape,
const Shape& target_shape,
const op::BroadcastModeSpec& broadcast_spec) const
{
if (arg0_shape.rank().is_dynamic())
{
return PartialShape::dynamic(target_shape.size());
}
const auto arg_rank_length = arg0_shape.rank().get_length();
PartialShape result_shape = target_shape;
auto start_axis = (broadcast_spec.m_type == op::BroadcastType::PDPD)
? broadcast_spec.m_axis
: target_shape.size() - arg0_shape.size();
auto start_axis = broadcast_spec.m_axis;

NODE_VALIDATION_CHECK(this,
start_axis >= 0,
"Broadcast target_shape has smaller rank ",
target_shape.size(),
" than arg shape ",
arg0_shape.size());
arg_rank_length);
for (auto i = start_axis; i < target_shape.size(); i++)
{
if (arg0_shape[i - start_axis].is_dynamic())
{
result_shape[i] = Dimension::dynamic();
continue;
}
const size_t arg_dim = arg0_shape[i - start_axis].get_length();
NODE_VALIDATION_CHECK(this,
arg0_shape[i - start_axis] == 1 || target_shape[i] == 1 ||
arg0_shape[i - start_axis] == target_shape[i],
arg_dim == 1 || target_shape[i] == 1 || arg_dim == target_shape[i],
"Broadcast incorrect target shape. Expecting either 1 or ",
arg0_shape[i - start_axis],
arg_dim,
" . Got ",
target_shape[i]);
result_shape[i] = std::max(arg0_shape[i - start_axis], target_shape[i]);
result_shape[i] = std::max(arg_dim, target_shape[i]);
}
return result_shape;
}

void op::util::BroadcastBase::validate_target_shape_numpy(const PartialShape& arg_shape,
const Shape& target_shape) const
{
if (arg_shape.rank().is_dynamic())
{
return;
}
const auto arg_rank_length = arg_shape.rank().get_length();
auto start_axis = target_shape.size() - arg_rank_length;
NODE_VALIDATION_CHECK(this,
start_axis >= 0,
"Broadcast target_shape has smaller rank ",
target_shape.size(),
" than arg shape ",
arg_rank_length);
for (auto i = start_axis; i < target_shape.size(); i++)
{
if (arg_shape[i - start_axis].is_dynamic())
{
continue;
}
const size_t arg_dim = arg_shape[i - start_axis].get_length();
NODE_VALIDATION_CHECK(this,
arg_dim == 1 || arg_dim == target_shape[i],
"Input shape dimension equal ",
arg_dim,
" cannot be broadcasted (numpy mode) to ",
target_shape[i],
". Allowed input dimension value would be 1",
target_shape[i] != 1
? (std::string(" or ") + std::to_string(target_shape[i])).c_str()
: "");
}
}

void op::util::BroadcastBase::validate_target_shape_none(const Shape& arg_shape,
const AxisVector& axes_mapping_val,
const Shape& target_shape) const
Expand Down Expand Up @@ -142,13 +186,28 @@ void op::util::BroadcastBase::validate_and_infer_types()
}

PartialShape result_shape{PartialShape::dynamic()};
auto input_rank = input_value(0).get_partial_shape().rank();
auto output_rank = input_value(1).get_partial_shape();
if (input_rank.is_static() && output_rank.is_static() && output_rank[0].is_static())
const auto& input_shape = get_input_partial_shape(0);
const auto input_rank = input_shape.rank();
const auto& target_shape = input_value(1).get_partial_shape();
const bool is_target_shape_known =
target_shape.rank().is_static() && target_shape[0].is_static();

if (m_mode.m_type == BroadcastType::BIDIRECTIONAL)
{
result_shape =
PartialShape::dynamic(std::max(input_rank.get_length(), output_rank[0].get_length()));
if (input_rank.is_static() && is_target_shape_known)
{
result_shape = PartialShape::dynamic(
std::max(input_rank.get_length(), target_shape[0].get_length()));
}
}
else
{
if (is_target_shape_known)
{
result_shape = PartialShape::dynamic(target_shape[0].get_length());
}
}

const auto shape_constant = as_type_ptr<op::v0::Constant>(input_value(1).get_node_shared_ptr());

if (auto concat = as_type_ptr<op::v0::Concat>(input_value(1).get_node_shared_ptr()))
Expand Down Expand Up @@ -206,17 +265,21 @@ void op::util::BroadcastBase::validate_and_infer_types()
}
}
}
else if (m_mode.m_type == BroadcastType::NUMPY || m_mode.m_type == BroadcastType::PDPD)
else if (m_mode.m_type == BroadcastType::NUMPY)
{
if (get_input_partial_shape(0).is_static() && get_input_partial_shape(1).is_static())
if (shape_constant)
{
auto arg_shape = get_input_shape(0);

if (shape_constant)
{
const auto target_shape = shape_constant->get_shape_val();
result_shape = get_result_shape_numpy_pdpd(arg_shape, target_shape, m_mode);
}
const auto target_shape = shape_constant->get_shape_val();
result_shape = target_shape;
validate_target_shape_numpy(input_shape, target_shape);
}
}
else if (m_mode.m_type == BroadcastType::PDPD)
{
if (shape_constant)
{
const auto target_shape = shape_constant->get_shape_val();
result_shape = get_result_shape_pdpd(input_shape, target_shape, m_mode);
}
}
set_output_type(0, get_input_element_type(0), result_shape);
Expand Down Expand Up @@ -490,9 +553,16 @@ bool op::util::BroadcastBase::evaluate(const HostTensorVector& outputs,
validate_target_shape_none(inputs[0]->get_shape(), axes_mapping_val, target_shape);
result_shape = target_shape;
}
else if (m_mode.m_type == BroadcastType::NUMPY || m_mode.m_type == BroadcastType::PDPD)
else if (m_mode.m_type == BroadcastType::PDPD)
{
result_shape = get_result_shape_pdpd(arg_shape, target_shape, m_mode);
pair_broadcast_axes =
get_broadcast_axes_numpy_pdpd(arg_shape, result_shape.to_shape(), m_mode);
}
else if (m_mode.m_type == BroadcastType::NUMPY)
{
result_shape = get_result_shape_numpy_pdpd(arg_shape, target_shape, m_mode);
result_shape = target_shape;
validate_target_shape_numpy(arg_shape, target_shape);
pair_broadcast_axes =
get_broadcast_axes_numpy_pdpd(arg_shape, result_shape.to_shape(), m_mode);
}
Expand Down
10 changes: 7 additions & 3 deletions ngraph/src/ngraph/op/util/broadcast_base.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -77,9 +77,13 @@ namespace ngraph
const AxisSet& broadcast_axes) const;

PartialShape
get_result_shape_numpy_pdpd(const Shape& arg0_shape,
const Shape& target_shape,
const op::BroadcastModeSpec& broadcast_spec) const;
get_result_shape_pdpd(const PartialShape& arg0_shape,
const Shape& target_shape,
const op::BroadcastModeSpec& broadcast_spec) const;

void validate_target_shape_numpy(const PartialShape& arg_shape,
const Shape& target_shape) const;

static std::pair<bool, AxisSet>
get_broadcast_axes_numpy_pdpd(const Shape& arg_shape,
const Shape& result_shape,
Expand Down
22 changes: 21 additions & 1 deletion ngraph/test/eval.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -315,7 +315,7 @@ TEST(eval, evaluate_broadcast_v3_numpy_vs_bidi)
Shape in_shape{1, 4, 1};

auto A = make_shared<op::Parameter>(element::f32, in_shape);
auto target_shape = op::Constant::create<int64_t>(element::i64, Shape{3}, {1, 1, 4});
auto target_shape = op::Constant::create<int64_t>(element::i64, Shape{3}, {1, 4, 4});
auto bcast_v3_num = make_shared<op::v3::Broadcast>(A, target_shape, op::BroadcastType::NUMPY);
auto fun_num = make_shared<Function>(OutputVector{bcast_v3_num}, ParameterVector{A});

Expand Down Expand Up @@ -343,6 +343,26 @@ TEST(eval, evaluate_broadcast_v3_numpy_vs_bidi)
ASSERT_EQ(expec2, result_val2);
}

TEST(eval, evaluate_broadcast_v3_bidi_3d)
{
Shape in_shape{1, 4, 1};

auto A = make_shared<op::Parameter>(element::f32, in_shape);
auto target_shape = op::Constant::create<int64_t>(element::i64, Shape{3}, {1, 1, 3});
auto bcast_v3_num =
make_shared<op::v3::Broadcast>(A, target_shape, op::BroadcastType::BIDIRECTIONAL);
auto fun_num = make_shared<Function>(OutputVector{bcast_v3_num}, ParameterVector{A});

auto result = make_shared<HostTensor>();
ASSERT_TRUE(fun_num->evaluate(
{result}, {make_host_tensor<element::Type_t::f32>(in_shape, {1.0f, 2.0f, 3.0f, 4.0f})}));
EXPECT_EQ(result->get_element_type(), element::f32);
EXPECT_EQ(result->get_partial_shape(), (PartialShape{1, 4, 3}));
auto result_val = read_vector<float>(result);
vector<float> expec{1.0f, 1.0f, 1.0f, 2.0f, 2.0f, 2.0f, 3.0f, 3.0f, 3.0f, 4.0f, 4.0f, 4.0f};
ASSERT_EQ(expec, result_val);
}

TEST(eval, evaluate_broadcast_v3_bidi_4d)
{
Shape in_shape{4, 1, 1};
Expand Down
Loading

0 comments on commit ae48d9d

Please sign in to comment.