-
Notifications
You must be signed in to change notification settings - Fork 2.4k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Loading status checks…
[DOCS] Generative Model Preparation (#27878)
Creating an article about preparation of generative models. --------- Signed-off-by: sgolebiewski-intel <sebastianx.golebiewski@intel.com>
1 parent
cd52fb7
commit 5747c55
Showing
3 changed files
with
160 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
159 changes: 159 additions & 0 deletions
159
docs/articles_en/learn-openvino/llm_inference_guide/genai-model-preparation.rst
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,159 @@ | ||
Generative Model Preparation | ||
=============================================================================== | ||
|
||
.. meta:: | ||
:description: Learn how to use Hugging Face Hub and Optimum Intel APIs to | ||
prepare generative models for inference. | ||
|
||
|
||
|
||
Since generative AI models tend to be big and resource-heavy, it is advisable to store them | ||
locally and optimize for efficient inference. This article will show how to prepare | ||
LLM models for inference with OpenVINO by: | ||
|
||
* `Downloading Models from Hugging Face <#download-generative-models-from-hugging-face-hub>`__ | ||
* `Downloading Models from Model Scope <#download-generative-models-from-model-scope>`__ | ||
* `Converting and Optimizing Generative Models <#convert-and-optimize-generative-models>`__ | ||
|
||
|
||
|
||
Download Generative Models From Hugging Face Hub | ||
############################################################################### | ||
|
||
Pre-converted and pre-optimized models are available in the `OpenVINO Toolkit <https://huggingface.co/OpenVINO>`__ | ||
organization, under the `model section <https://huggingface.co/OpenVINO#models>`__, or under | ||
different model collections: | ||
|
||
* `LLM: <https://huggingface.co/collections/OpenVINO/llm-6687aaa2abca3bbcec71a9bd>`__ | ||
* `Speech-to-Text <https://huggingface.co/collections/OpenVINO/speech-to-text-672321d5c070537a178a8aeb>`__ | ||
* `Speculative Decoding Draft Models <https://huggingface.co/collections/OpenVINO/speculative-decoding-draft-models-673f5d944d58b29ba6e94161>`__ | ||
|
||
You can also use the **huggingface_hub** package to download models: | ||
|
||
.. code-block:: console | ||
pip install huggingface_hub | ||
huggingface-cli download "OpenVINO/phi-2-fp16-ov" --local-dir model_path | ||
The models can be used in OpenVINO immediately after download. No dependencies | ||
are required except **huggingface_hub**. | ||
|
||
|
||
Download Generative Models From Model Scope | ||
############################################################################### | ||
|
||
To download models from `Model Scope <https://www.modelscope.cn/home>`__, | ||
use the **modelscope** package: | ||
|
||
.. code-block:: console | ||
pip install modelscope | ||
modelscope download --model "Qwen/Qwen2-7b" --local_dir model_path | ||
Models downloaded via Model Scope are available in Pytorch format only and they must | ||
be :doc:`converted to OpenVINO IR <../../openvino-workflow/model-preparation/convert-model-to-ir>` | ||
before inference. | ||
|
||
Convert and Optimize Generative Models | ||
############################################################################### | ||
|
||
OpenVINO works best with models in the OpenVINO IR format, both in full precision and quantized. | ||
If your selected model has not been pre-optimized, you can easily do it yourself, using a single | ||
**optimum-cli** command. For that, make sure optimum-intel is installed on your system: | ||
|
||
.. code-block:: console | ||
pip install optimum-intel[openvino] | ||
While optimizing models, you can decide to keep the original precision or select one that is lower. | ||
|
||
.. tab-set:: | ||
|
||
.. tab-item:: Keeping full model precision | ||
:sync: full-precision | ||
|
||
.. code-block:: console | ||
optimum-cli export openvino --model <model_id> --weight-format fp16 <exported_model_name> | ||
Examples: | ||
|
||
.. tab-set:: | ||
|
||
.. tab-item:: LLM (text generation) | ||
:sync: llm-text-gen | ||
|
||
.. code-block:: console | ||
optimum-cli export openvino --model meta-llama/Llama-2-7b-chat-hf --weight-format fp16 ov_llama_2 | ||
.. tab-item:: Diffusion models (text2image) | ||
:sync: diff-text-img | ||
|
||
.. code-block:: console | ||
optimum-cli export openvino --model stabilityai/stable-diffusion-xl-base-1.0 --weight-format fp16 ov_SDXL | ||
.. tab-item:: VLM (Image processing): | ||
:sync: vlm-img-proc | ||
|
||
.. code-block:: console | ||
optimum-cli export openvino --model openbmb/MiniCPM-V-2_6 --trust-remote-code –weight-format fp16 ov_MiniCPM-V-2_6 | ||
.. tab-item:: Whisper models (speech2text): | ||
:sync: whisp-speech-txt | ||
|
||
.. code-block:: console | ||
optimum-cli export openvino --trust-remote-code --model openai/whisper-base ov_whisper | ||
.. tab-item:: Exporting to selected precision | ||
:sync: low-precision | ||
|
||
.. code-block:: console | ||
optimum-cli export openvino --model <model_id> --weight-format int4 <exported_model_name> | ||
Examples: | ||
|
||
.. tab-set:: | ||
|
||
.. tab-item:: LLM (text generation) | ||
:sync: llm-text-gen | ||
|
||
.. code-block:: console | ||
optimum-cli export openvino --model meta-llama/Llama-2-7b-chat-hf --weight-format int4 ov_llama_2 | ||
.. tab-item:: Diffusion models (text2image) | ||
:sync: diff-text-img | ||
|
||
.. code-block:: console | ||
optimum-cli export openvino --model stabilityai/stable-diffusion-xl-base-1.0 --weight-format int4 ov_SDXL | ||
.. tab-item:: VLM (Image processing) | ||
:sync: vlm-img-proc | ||
|
||
.. code-block:: console | ||
optimum-cli export openvino -m model_path --task text-generation-with-past --weight-format int4 ov_MiniCPM-V-2_6 | ||
.. note:: | ||
|
||
Any other ``model_id``, for example ``openbmb/MiniCPM-V-2_6``, or the path | ||
to a local model file can be used. | ||
|
||
Also, you can specify different data type like ``int8``. | ||
|
||
|
||
Additional Resources | ||
############################################################################### | ||
|
||
* `Full set of optimum-cli parameters <https://huggingface.co/docs/optimum/en/intel/openvino/export>`__ | ||
* :doc:`Model conversion in OpenVINO <../../openvino-workflow/model-preparation/convert-model-to-ir>` | ||
* :doc:`Model optimization in OpenVINO <../../openvino-workflow/model-optimization>` |
Binary file modified
BIN
-2.13 KB
(100%)
docs/sphinx_setup/_static/download/GenAI_Quick_Start_Guide.pdf
Binary file not shown.