Skip to content

Commit

Permalink
[GPU] Optimize out Gather by converting to implicit crop
Browse files Browse the repository at this point in the history
+ Changed Gather if it divides input tensor along batch axis
+ Converted Gather to cldnn Crop in CreateGatherOpBase
+ Added implicit Crop condition for batch axis

Signed-off-by: Min, Byungil <[email protected]>
  • Loading branch information
byungilm committed Jun 15, 2023
1 parent d66e322 commit 356bbdc
Show file tree
Hide file tree
Showing 5 changed files with 233 additions and 66 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -317,6 +317,72 @@ static bool can_reshape_be_optimized(const reshape_node& node) {
return node.is_in_place() && !node.has_fused_primitives();
}

static bool is_optimizable_padding_for_crop(const crop_node& node) {
const auto& crop_layout = node.get_output_layout();
auto input_layout = node.get_dependency(0).get_output_layout();
auto crop_prim = node.get_primitive();
auto opt_lower_pad = crop_prim->offsets.feature[0];
auto opt_upper_pad = input_layout.feature() - crop_prim->offsets.feature[0] - crop_layout.get_tensor().feature[0];

// do not optimize crop if paddings are not properly aligned
for (auto& usr : node.get_users()) {
auto usr_layout = usr->get_output_layout();
if (usr_layout.format == format::b_fs_yx_fsv16 &&
(opt_lower_pad % 16 != 0 || opt_upper_pad % 16 != 0))
return false;

if (input_layout.data_padding.lower_size().batch[0] != 0 || input_layout.data_padding.upper_size().batch[0] != 0 ||
input_layout.data_padding.lower_size().spatial[0] != 0 || input_layout.data_padding.upper_size().spatial[0] != 0 ||
input_layout.data_padding.lower_size().spatial[1] != 0 || input_layout.data_padding.upper_size().spatial[1] != 0)
return false;

// oneDNN doesn't support paddings
if (usr->get_preferred_impl_type() == impl_types::onednn)
return false;
}

return true;
}

static bool can_crop_be_optimized_along_feature(const crop_node& node) {
const auto& crop_layout = node.get_output_layout();
auto format = crop_layout.format;
auto input_layout = node.get_dependency(0).get_output_layout();
const auto& crop_size = crop_layout.get_tensor();
const auto& out_pad = crop_layout.data_padding;

if (format == format::bfyx && crop_size.batch[0] == input_layout.batch() &&
crop_size.spatial[0] == input_layout.spatial(0) &&
crop_size.spatial[1] == input_layout.spatial(1) && out_pad.lower_size().feature[0] == 0 &&
out_pad.upper_size().feature[0] == 0 && out_pad.lower_size().batch[0] == 0 &&
out_pad.upper_size().batch[0] == 0 && out_pad.lower_size().spatial[0] == 0 &&
out_pad.lower_size().spatial[1] == 0 && out_pad.upper_size().spatial[0] == 0 &&
out_pad.upper_size().spatial[1] == 0) {
return true;
}

return false;
}

static bool can_crop_be_optimized_along_batch(const crop_node& node) {
const auto& crop_layout = node.get_output_layout();
auto format = crop_layout.format;
auto input_layout = node.get_dependency(0).get_output_layout();
const auto crop_shape = crop_layout.get_ordered_dims();
const auto input_shape = input_layout.get_ordered_dims();
const auto& in_padding = input_layout.data_padding;
const auto& out_padding = crop_layout.data_padding;

// Check format's order is 'bxxx' and only batch size is different
if (format::is_simple_data_format(format) && format::traits(format)._order[0] == 0 &&
std::equal(input_shape.begin()+1, input_shape.end(), crop_shape.begin()+1) &&
!out_padding && !in_padding) {
return true;
}

return false;
}

static void propagate_padding_to_opt_out_users(program_node& node, cldnn::padding padding_data) {
if (padding_data == cldnn::padding())
return;
Expand Down Expand Up @@ -366,6 +432,7 @@ void prepare_buffer_fusing::run(program& p) {

if (!can_optimize(node))
continue;

// zero copy
program_helpers::do_for_types<crop>(*node, [&p](crop_node& node) {
// if the node is marked as network output, prevent optimizations which would affect a form of its output,
Expand All @@ -392,56 +459,38 @@ void prepare_buffer_fusing::run(program& p) {
if (p.is_loop_body() && node.get_dependency(0).is_type<lstm_elt>()) {
return;
}
// optimization is available for cropping across depth(features) only

// optimization is available for cropping across depth(features) or batch
// if output padding has defined padding across features already it wouldn't
// work because it expect to have zeros in the padded area.
if (!is_optimizable_padding_for_crop(node))
return;

const auto& crop_layout = node.get_output_layout();
auto format = crop_layout.format;
auto crop_prim = node.get_primitive();
auto input_layout = node.get_dependency(0).get_output_layout();
const auto& crop_size = crop_layout.get_tensor();
const auto& out_padd = crop_layout.data_padding;
auto opt_lower_pad = crop_prim->offsets.feature[0];
auto opt_upper_pad = input_layout.feature() - crop_prim->offsets.feature[0] - crop_size.feature[0];

// do not optimize crop if paddings are not properly aligned
for (auto& usr : node.get_users()) {
auto usr_layout = usr->get_output_layout();
if (usr_layout.format == format::b_fs_yx_fsv16 &&
(opt_lower_pad % 16 != 0 || opt_upper_pad % 16 != 0))
return;
if (input_layout.data_padding.lower_size().batch[0] != 0 || input_layout.data_padding.upper_size().batch[0] != 0 ||
input_layout.data_padding.lower_size().spatial[0] != 0 || input_layout.data_padding.upper_size().spatial[0] != 0 ||
input_layout.data_padding.lower_size().spatial[1] != 0 || input_layout.data_padding.upper_size().spatial[1] != 0)
return;
// oneDNN doesn't support paddings
if (usr->get_preferred_impl_type() == impl_types::onednn)
return;
}

if (format == format::bfyx && crop_size.batch[0] == input_layout.batch() &&
crop_size.spatial[0] == input_layout.spatial(0) &&
crop_size.spatial[1] == input_layout.spatial(1) && out_padd.lower_size().feature[0] == 0 &&
out_padd.upper_size().feature[0] == 0 && out_padd.lower_size().batch[0] == 0 &&
out_padd.upper_size().batch[0] == 0 && out_padd.lower_size().spatial[0] == 0 &&
out_padd.lower_size().spatial[1] == 0 && out_padd.upper_size().spatial[0] == 0 &&
out_padd.upper_size().spatial[1] == 0) {
// Regular crop
// crop input buffer
// |___________data____________|
//
// crop output buffer
// |-------->| offsets[f] |<--|
// |_____data____|
// <------------>
// reference size
//
// In-place crop
// crop output buffer
// |_low_pad_|__data_size__|___|<-upper pad
const auto& out_pad = crop_layout.data_padding;
auto input_layout = node.get_dependency(0).get_output_layout();
auto crop_prim = node.get_primitive();

// feature num of pad should be accumulated if dep has been optimized out.
// Regular crop
// crop input buffer
// |___________data____________|
//
// crop output buffer
// |-------->| offsets[f] |<--|
// |_____data____|
// <------------>
// reference size
//
// In-place crop
// crop output buffer
// |_low_pad_|__data_size__|___|<-upper pad
if (can_crop_be_optimized_along_feature(node)) {
auto crop_prim = node.get_primitive();
auto opt_lower_pad = crop_prim->offsets.feature[0];
auto opt_upper_pad = input_layout.feature() - crop_prim->offsets.feature[0] - crop_size.feature[0];
auto& dep = node.get_dependency(0);
// feature num of pad should be accumulated if dep has been optimized out.
if (dep.is_type<crop>() && dep.can_be_optimized()) {
auto dep_pad = dep.get_output_layout().data_padding;
OPENVINO_ASSERT(
Expand All @@ -454,18 +503,36 @@ void prepare_buffer_fusing::run(program& p) {
opt_upper_pad += dep_pad.upper_size().feature[0];
}

// set padding
node.set_output_padding(
padding({out_padd.lower_size().batch[0],
opt_lower_pad,
out_padd.lower_size().spatial[0],
out_padd.lower_size().spatial[1]},
{out_padd.upper_size().batch[0],
opt_upper_pad,
out_padd.upper_size().spatial[0],
out_padd.upper_size().spatial[1]}));
node.can_be_optimized(true);
propagate_padding_to_opt_out_users(node, node.get_output_layout().data_padding);
padding({out_pad.lower_size().batch[0],
opt_lower_pad,
out_pad.lower_size().spatial[0],
out_pad.lower_size().spatial[1]},
{out_pad.upper_size().batch[0],
opt_upper_pad,
out_pad.upper_size().spatial[0],
out_pad.upper_size().spatial[1]}));
} else if (can_crop_be_optimized_along_batch(node)) {
auto crop_prim = node.get_primitive();
auto opt_lower_pad = crop_prim->offsets.batch[0];
auto opt_upper_pad = input_layout.batch() - crop_prim->offsets.batch[0] - crop_size.batch[0];

auto new_padding = padding({opt_lower_pad,
out_pad.lower_size().feature[0],
out_pad.lower_size().spatial[0],
out_pad.lower_size().spatial[1]},
{opt_upper_pad,
out_pad.upper_size().feature[0],
out_pad.upper_size().spatial[0],
out_pad.upper_size().spatial[1]});
node.set_output_padding(new_padding);
} else {
return;
}

node.can_be_optimized(true);
propagate_padding_to_opt_out_users(node, node.get_output_layout().data_padding);
}
});
}
Expand Down
56 changes: 44 additions & 12 deletions src/plugins/intel_gpu/src/plugin/ops/gather.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4,12 +4,14 @@

#include "intel_gpu/plugin/program.hpp"
#include "intel_gpu/plugin/common_utils.hpp"
#include "transformations/utils/utils.hpp"

#include "ngraph/op/gather.hpp"

#include "intel_gpu/primitives/gather.hpp"
#include "intel_gpu/primitives/reorder.hpp"
#include "intel_gpu/primitives/reshape.hpp"
#include "intel_gpu/primitives/crop.hpp"

using namespace InferenceEngine;
namespace ov {
Expand Down Expand Up @@ -44,12 +46,13 @@ void CreateGatherOpBase(Program& p, const std::shared_ptr<T>& op, const int64_t
}

// Dynamic path will do shape infer internally, so no need to pass valid out shape for that case
ov::Shape out_shape = op->get_output_partial_shape(0).is_static() ? op->get_output_shape(0) : ov::Shape{};
bool is_static = op->get_output_partial_shape(0).is_static();
ov::Shape out_shape = is_static ? op->get_output_shape(0) : ov::Shape{};

// Update output_shape in case of scalar indice
bool need_reshape = false;
auto out_shape_original = out_shape;
if (!p.use_new_shape_infer() && op->get_output_partial_shape(0).is_static()) {
if (!p.use_new_shape_infer() && is_static) {
auto input1_shape = op->get_input_shape(1);
if (input1_shape.size() == 0 && batch_dim == 0) {
need_reshape = true;
Expand Down Expand Up @@ -77,21 +80,50 @@ void CreateGatherOpBase(Program& p, const std::shared_ptr<T>& op, const int64_t
}
}

// gather
// Set layer name for Gather
auto reshapeName = layerName + "";
if (need_reshape) {
layerName = layerName + "_reshape_output";
}

auto gatherPrim = cldnn::gather(layerName,
reordered_inputs[0],
reordered_inputs[1],
axis,
out_shape,
batch_dim,
support_neg_ind);

p.add_primitive(*op, gatherPrim);
// Check if Gather could be converted to other primitive
const auto input_shape = op->get_input_partial_shape(0);
const auto input_rank = input_shape.rank().get_length();
const auto& indices = op->input_value(1);
if (is_static && axis == 0 && input_rank > 1 && indices.get_partial_shape().rank().get_length() == 0 &&
std::equal(input_shape.begin()+1, input_shape.end(), out_shape.begin()+1)) {
// Gather -> Crop
// this Gather simply divides an input tensor along Batch axis
auto get_crop_layer_name = [&](std::string name, size_t idx)->std::string {
return (name + "/crop_" + std::to_string(idx));
};

// Get indices info to calculate offset
const auto& indices_node = indices.get_node_shared_ptr();
auto indices_constant = std::dynamic_pointer_cast<ngraph::op::v0::Constant>(indices_node);
float result = 0.f;
ov::op::util::get_single_value(indices_constant, result);

// Set tensors for crop shape and offset
InferenceEngine::SizeVector start_offset(input_shape.size());
start_offset[0] = static_cast<size_t>(result);
auto offsetTensor = tensor_from_dims(start_offset, 0);
auto outTensor = tensor_from_dims(out_shape, 1);

// Create Crop
layerName = get_crop_layer_name(layerName, static_cast<size_t>(result));
auto cropPrim = cldnn::crop(layerName, reordered_inputs[0], outTensor, offsetTensor);
p.add_primitive(*op, cropPrim);
} else {
auto gatherPrim = cldnn::gather(layerName,
reordered_inputs[0],
reordered_inputs[1],
axis,
out_shape,
batch_dim,
support_neg_ind);
p.add_primitive(*op, gatherPrim);
}

// Add reorder and reshape for scalar indice
if (need_reshape) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -559,4 +559,23 @@ INSTANTIATE_TEST_SUITE_P(
GatherLayerTest::getTestCaseName
);

const auto GatherAxes0Optimized = []() {
return testing::Combine(testing::ValuesIn({std::vector<size_t>{4, 8, 2, 2}}),
testing::ValuesIn({std::vector<size_t>{}}),
testing::ValuesIn({std::tuple<int, int>{0, 0}}),
testing::ValuesIn(netPrecisionsFP32),
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
testing::Values(InferenceEngine::Precision::UNSPECIFIED),
testing::Values(InferenceEngine::Layout::ANY),
testing::Values(InferenceEngine::Layout::ANY),
testing::Values(CommonTestUtils::DEVICE_GPU));
};

INSTANTIATE_TEST_SUITE_P(
smoke_Gather7Axes0Optimized,
Gather8IndiceScalarLayerTest,
GatherAxes0Optimized(),
Gather8IndiceScalarLayerTest::getTestCaseName
);

} // namespace
Original file line number Diff line number Diff line change
Expand Up @@ -61,4 +61,13 @@ INSTANTIATE_TEST_SUITE_P(smoke, gather_test,
},
}));

INSTANTIATE_TEST_SUITE_P(optimized, gather_test,
testing::ValuesIn(std::vector<gather_test_params>{
{
layout{ov::PartialShape{3, 4, 2, 2}, data_types::f32, format::bfyx}, layout{ov::PartialShape{1}, data_types::f32, format::bfyx},
0, 0,
layout{ov::PartialShape{1, 4, 2, 2}, data_types::f32, format::bfyx}
},
}));

} // shape_infer_tests
40 changes: 40 additions & 0 deletions src/plugins/intel_gpu/tests/unit/test_cases/gather_gpu_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2097,3 +2097,43 @@ TEST(gather_gpu_u8, 322_axisF) {
TEST(gather_gpu_u8, export_import) {
test_gather_gpu_u8_322_axisF<uint8_t>(true);
}

TEST(gather_opt_out, Baxis_gather_to_crop) {
auto& engine = get_test_engine();

auto input1 = engine.allocate_memory({ data_types::f32, format::bfyx, tensor{ 3, 2, 1, 2 } }); // Dictionary
auto input2 = engine.allocate_memory({ data_types::i32, format::bfyx, tensor{ 1, 1, 1, 1 } }); // Indexes
int64_t axis = 0;

set_values(input1, {
1.f, 2.f, 3.f, 4.f,
5.f, 6.f, 7.f, 8.f,
9.f, 10.f, 11.f, 12.f
});

set_values(input2, {
1
});

topology topology;
topology.add(input_layout("InputDictionary", input1->get_layout()));
topology.add(input_layout("InputText", input2->get_layout()));
topology.add(
gather("gather", input_info("InputDictionary"), input_info("InputText"), axis, ov::Shape{1, 2, 1, 2})
);
topology.add(reorder("reorder", input_info("gather"), format::bfyx, data_types::i8));

network network(engine, topology, get_test_default_config(engine));

network.set_input_data("InputDictionary", input1);
network.set_input_data("InputText", input2);

auto outputs = network.execute();

auto output = outputs.at("reorder").get_memory();
cldnn::mem_lock<int8_t> output_ptr(output, get_test_stream());

std::vector<int8_t> expected_results = {
5, 6, 7, 8
};
}

0 comments on commit 356bbdc

Please sign in to comment.