-
Notifications
You must be signed in to change notification settings - Fork 191
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add generation time metrics #613
Merged
andrei-kochin
merged 12 commits into
openvinotoolkit:releases/2024/3
from
pavel-esir:add_perf_counters
Jul 26, 2024
Merged
Changes from all commits
Commits
Show all changes
12 commits
Select commit
Hold shift + click to select a range
cb100cb
[Continuous batching] Replace standard max_element call with custom l…
mzegla f0e4190
wip
pavel-esir 7cab496
add detokenization metric; refactor split to perf_conter & perf_metrics
pavel-esir bb1113c
refactor structure, add python sample
pavel-esir 0a8f0d9
add more preicise durations
pavel-esir 90320f4
add cpp Readme, ensured correct batch processing, add PerfMetrics to …
pavel-esir aeec730
use MeanStdPair
pavel-esir c45aed5
Merge remote-tracking branch 'upstream/releases/2024/3' into add_perf…
pavel-esir be2fdaf
resolve conflicts
pavel-esir b00bcd8
apply comments
pavel-esir 60e7188
uset getter and cache evaluate results
pavel-esir e553ef5
update Readme's
pavel-esir File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
# Copyright (C) 2023-2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
|
||
find_package(OpenVINOGenAI REQUIRED PATHS | ||
"${CMAKE_BINARY_DIR}" # Reuse the package from the build. | ||
${OpenVINO_DIR} # GenAI may be installed alogside OpenVINO. | ||
) | ||
|
||
FetchContent_Declare(cxxopts | ||
URL https://github.com/jarro2783/cxxopts/archive/refs/tags/v3.1.1.tar.gz | ||
URL_HASH SHA256=523175f792eb0ff04f9e653c90746c12655f10cb70f1d5e6d6d9491420298a08) | ||
FetchContent_MakeAvailable(cxxopts) | ||
|
||
add_executable(benchmark_genai benchmark_genai.cpp) | ||
target_link_libraries(benchmark_genai PRIVATE openvino::genai cxxopts::cxxopts) | ||
set_target_properties(benchmark_genai PROPERTIES | ||
COMPILE_PDB_NAME benchmark_genai | ||
# Ensure out of box LC_RPATH on macOS with SIP | ||
INSTALL_RPATH_USE_LINK_PATH ON) | ||
install(TARGETS benchmark_genai | ||
RUNTIME DESTINATION samples_bin/ | ||
COMPONENT samples_bin | ||
EXCLUDE_FROM_ALL) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
# LLMs benchmarking sample | ||
|
||
This sample script demonstrates how to benchmark an LLMs in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text, and calculating various performance metrics. | ||
|
||
## Download and convert the model and tokenizers | ||
|
||
The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version. | ||
|
||
It's not required to install [../../requirements.txt](../../requirements.txt) for deployment if the model has already been exported. | ||
|
||
```sh | ||
pip install --upgrade-strategy eager -r ../../requirements.txt | ||
optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 | ||
``` | ||
|
||
## Usage | ||
|
||
```sh | ||
benchmark_vanilla_genai [OPTIONS] | ||
``` | ||
|
||
### Options | ||
|
||
- `-m, --model`: Path to the model and tokenizers base directory. | ||
- `-p, --prompt` (default: `"The Sky is blue because"`): The prompt to generate text. | ||
- `-nw, --num_warmup` (default: `1`): Number of warmup iterations. | ||
- `-mt, --max_new_tokens` (default: `20`): Number of warmup iterations. | ||
- `-n, --num_iter` (default: `3`): Number of iterations. | ||
- `-d, --device` (default: `"CPU"`): Device to run the model on. | ||
|
||
### Output: | ||
|
||
``` | ||
benchmark_vanilla_genai -m TinyLlama-1.1B-Chat-v1.0 -n 10 | ||
``` | ||
|
||
``` | ||
Load time: 3405.69 ms | ||
Generate time: 1430.77 ± 3.04 ms | ||
Tokenization time: 0.51 ± 0.02 ms | ||
Detokenization time: 0.37 ± 0.01 ms | ||
TTFT: 81.60 ± 0.54 ms | ||
TPOT: 71.52 ± 2.72 ms | ||
Throughput tokens/s: 13.98 ± 0.53 | ||
``` | ||
|
||
For more information how performance metrics are calculated please follow [performance-metrics tutorial](../../../src/README.md#performance-metrics). |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
// Copyright (C) 2023-2024 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
|
||
#include "openvino/genai/llm_pipeline.hpp" | ||
#include <cxxopts.hpp> | ||
|
||
int main(int argc, char* argv[]) try { | ||
cxxopts::Options options("benchmark_vanilla_genai", "Help command"); | ||
|
||
options.add_options() | ||
("m,model", "Path to model and tokenizers base directory", cxxopts::value<std::string>()->default_value(".")) | ||
("p,prompt", "Prompt", cxxopts::value<std::string>()->default_value("The Sky is blue because")) | ||
("nw,num_warmup", "Number of warmup iterations", cxxopts::value<size_t>()->default_value(std::to_string(1))) | ||
("n,num_iter", "Number of iterations", cxxopts::value<size_t>()->default_value(std::to_string(3))) | ||
("mt,max_new_tokens", "Maximal number of new tokens", cxxopts::value<size_t>()->default_value(std::to_string(20))) | ||
("d,device", "device", cxxopts::value<std::string>()->default_value("CPU")) | ||
("h,help", "Print usage"); | ||
|
||
cxxopts::ParseResult result; | ||
try { | ||
result = options.parse(argc, argv); | ||
} catch (const cxxopts::exceptions::exception& e) { | ||
std::cout << e.what() << "\n\n"; | ||
std::cout << options.help() << std::endl; | ||
return EXIT_FAILURE; | ||
} | ||
|
||
if (result.count("help")) { | ||
std::cout << options.help() << std::endl; | ||
return EXIT_SUCCESS; | ||
} | ||
|
||
std::string prompt = result["prompt"].as<std::string>(); | ||
const std::string model_path = result["model"].as<std::string>(); | ||
std::string device = result["device"].as<std::string>(); | ||
size_t num_warmup = result["num_warmup"].as<size_t>(); | ||
size_t num_iter = result["num_iter"].as<size_t>(); | ||
|
||
ov::genai::GenerationConfig config; | ||
config.max_new_tokens = result["max_new_tokens"].as<size_t>(); | ||
|
||
ov::genai::LLMPipeline pipe(model_path, device); | ||
|
||
for (size_t i = 0; i < num_warmup; i++) | ||
pipe.generate(prompt, config); | ||
|
||
ov::genai::DecodedResults res = pipe.generate(prompt, config); | ||
ov::genai::PerfMetrics metrics = res.perf_metrics; | ||
for (size_t i = 0; i < num_iter - 1; i++) { | ||
res = pipe.generate(prompt, config); | ||
metrics = metrics + res.perf_metrics; | ||
} | ||
|
||
std::cout << std::fixed << std::setprecision(2); | ||
std::cout << "Load time: " << metrics.get_load_time() << " ms" << std::endl; | ||
std::cout << "Generate time: " << metrics.get_generate_duration().mean << " ± " << metrics.get_generate_duration().std << " ms" << std::endl; | ||
std::cout << "Tokenization time: " << metrics.get_tokenization_duration().mean << " ± " << metrics.get_tokenization_duration().std << " ms" << std::endl; | ||
std::cout << "Detokenization time: " << metrics.get_detokenization_duration().mean << " ± " << metrics.get_detokenization_duration().std << " ms" << std::endl; | ||
std::cout << "TTFT: " << metrics.get_ttft().mean << " ± " << metrics.get_ttft().std << " ms" << std::endl; | ||
std::cout << "TPOT: " << metrics.get_tpot().mean << " ± " << metrics.get_tpot().std << " ms/token " << std::endl; | ||
std::cout << "Throughput: " << metrics.get_throughput().mean << " ± " << metrics.get_throughput().std << " tokens/s" << std::endl; | ||
|
||
return 0; | ||
} catch (const std::exception& error) { | ||
std::cerr << error.what() << '\n'; | ||
return EXIT_FAILURE; | ||
} catch (...) { | ||
std::cerr << "Non-exception object thrown\n"; | ||
return EXIT_FAILURE; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
# LLMs benchmarking sample | ||
|
||
This sample script demonstrates how to benchmark an LLMs in OpenVINO GenAI. The script includes functionality for warm-up iterations, generating text, and calculating various performance metrics. | ||
|
||
## Download and convert the model and tokenizers | ||
|
||
The `--upgrade-strategy eager` option is needed to ensure `optimum-intel` is upgraded to the latest version. | ||
|
||
It's not required to install [../../requirements.txt](../../requirements.txt) for deployment if the model has already been exported. | ||
|
||
```sh | ||
pip install --upgrade-strategy eager -r ../../requirements.txt | ||
optimum-cli export openvino --trust-remote-code --model TinyLlama/TinyLlama-1.1B-Chat-v1.0 TinyLlama-1.1B-Chat-v1.0 | ||
``` | ||
|
||
## Usage | ||
|
||
```sh | ||
python benchmark_vanilla_genai.py [OPTIONS] | ||
``` | ||
|
||
### Options | ||
|
||
- `-m, --model`: Path to the model and tokenizers base directory. | ||
- `-p, --prompt` (default: `"The Sky is blue because"`): The prompt to generate text. | ||
- `-nw, --num_warmup` (default: `1`): Number of warmup iterations. | ||
- `-n, --num_iter` (default: `3`): Number of iterations. | ||
- `-mt, --max_new_tokens` (default: `20`): Number of warmup iterations. | ||
- `-d, --device` (default: `"CPU"`): Device to run the model on. | ||
|
||
### Output: | ||
|
||
``` | ||
python benchmark_vanilla_genai.py -m TinyLlama-1.1B-Chat-v1.0 -n 10 | ||
``` | ||
|
||
``` | ||
Load time: 3405.69 ms | ||
Generate time: 1430.77 ± 3.04 ms | ||
Tokenization time: 0.51 ± 0.02 ms | ||
Detokenization time: 0.37 ± 0.01 ms | ||
TTFT: 81.60 ± 0.54 ms | ||
TPOT: 71.52 ± 2.72 ms | ||
Throughput tokens/s: 13.98 ± 0.53 | ||
``` | ||
|
||
For more information on how performance metrics are calculated, see [performance metrics readme](../../../src/README.md#performance-metrics). |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
# Copyright (C) 2023-2024 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import argparse | ||
import openvino_genai as ov_genai | ||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description="Help command") | ||
parser.add_argument("-m", "--model", type=str, help="Path to model and tokenizers base directory") | ||
parser.add_argument("-p", "--prompt", type=str, default="The Sky is blue because", help="Prompt") | ||
parser.add_argument("-nw", "--num_warmup", type=int, default=1, help="Number of warmup iterations") | ||
parser.add_argument("-n", "--num_iter", type=int, default=2, help="Number of iterations") | ||
parser.add_argument("-mt", "--max_new_tokens", type=int, default=20, help="Maximal number of new tokens") | ||
parser.add_argument("-d", "--device", type=str, default="CPU", help="Device") | ||
|
||
args = parser.parse_args() | ||
|
||
# Perf metrics is stored in DecodedResults. | ||
# In order to get DecodedResults instead of a string input should be a list. | ||
prompt = [args.prompt] | ||
model_path = args.model | ||
device = args.device | ||
num_warmup = args.num_warmup | ||
num_iter = args.num_iter | ||
|
||
config = ov_genai.GenerationConfig() | ||
config.max_new_tokens = args.max_new_tokens | ||
|
||
pipe = ov_genai.LLMPipeline(model_path, device) | ||
|
||
for _ in range(num_warmup): | ||
pipe.generate(prompt, config) | ||
|
||
res = pipe.generate(prompt, config) | ||
perf_metrics = res.perf_metrics | ||
for _ in range(num_iter - 1): | ||
res = pipe.generate(prompt, config) | ||
perf_metrics += res.perf_metrics | ||
|
||
print(f"Load time: {perf_metrics.get_load_time():.2f} ms") | ||
print(f"Generate time: {perf_metrics.get_generate_duration().mean:.2f} ± {perf_metrics.get_generate_duration().std:.2f} ms") | ||
print(f"Tokenization time: {perf_metrics.get_tokenization_duration().mean:.2f} ± {perf_metrics.get_tokenization_duration().std:.2f} ms") | ||
print(f"Detokenization time: {perf_metrics.get_detokenization_duration().mean:.2f} ± {perf_metrics.get_detokenization_duration().std:.2f} ms") | ||
print(f"TTFT: {perf_metrics.get_ttft().mean:.2f} ± {perf_metrics.get_ttft().std:.2f} ms") | ||
print(f"TPOT: {perf_metrics.get_tpot().mean:.2f} ± {perf_metrics.get_tpot().std:.2f} ms") | ||
print(f"Throughput : {perf_metrics.get_throughput().mean:.2f} ± {perf_metrics.get_throughput().std:.2f} tokens/s") | ||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
When it gets merged, please, open another PR adding it to C++ and Python docstrings.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done #713