Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Image generation] Added i64 support for text encoders inputs #1424

Merged
merged 1 commit into from
Dec 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 11 additions & 5 deletions src/cpp/src/image_generation/models/clip_text_model.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -118,13 +118,20 @@ ov::Tensor CLIPTextModel::infer(const std::string& pos_prompt, const std::string
const size_t text_embedding_batch_size = do_classifier_free_guidance ? 2 : 1;

auto perform_tokenization = [&](const std::string& prompt, ov::Tensor input_ids) {
std::fill_n(input_ids.data<int32_t>(), input_ids.get_size(), pad_token_id);

ov::Tensor input_ids_token = m_clip_tokenizer.encode(prompt).input_ids;
std::copy_n(input_ids_token.data<std::int64_t>(), input_ids_token.get_size(), input_ids.data<std::int32_t>());

if (input_ids.get_element_type() == ov::element::i32) {
std::fill_n(input_ids.data<int32_t>(), input_ids.get_size(), pad_token_id);
std::copy_n(input_ids_token.data<int64_t>(), input_ids_token.get_size(), input_ids.data<int32_t>());
} else {
std::fill_n(input_ids.data<int64_t>(), input_ids.get_size(), pad_token_id);
std::copy_n(input_ids_token.data<int64_t>(), input_ids_token.get_size(), input_ids.data<int64_t>());
}
};

ov::Tensor input_ids(ov::element::i32, {text_embedding_batch_size, m_config.max_position_embeddings});
ov::Tensor input_ids = m_request.get_input_tensor();
input_ids.set_shape({text_embedding_batch_size, m_config.max_position_embeddings});

size_t current_batch_idx = 0;

if (do_classifier_free_guidance) {
Expand All @@ -141,7 +148,6 @@ ov::Tensor CLIPTextModel::infer(const std::string& pos_prompt, const std::string
{current_batch_idx + 1, m_config.max_position_embeddings}));

// text embeddings
m_request.set_tensor("input_ids", input_ids);
m_request.infer();

return m_request.get_output_tensor(0);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -109,13 +109,20 @@ ov::Tensor CLIPTextModelWithProjection::infer(const std::string& pos_prompt, con
const size_t text_embedding_batch_size = do_classifier_free_guidance ? 2 : 1;

auto perform_tokenization = [&](const std::string& prompt, ov::Tensor input_ids) {
std::fill_n(input_ids.data<int64_t>(), input_ids.get_size(), pad_token_id);

ov::Tensor input_ids_token = m_clip_tokenizer.encode(prompt).input_ids;
std::copy_n(input_ids_token.data<std::int64_t>(), input_ids_token.get_size(), input_ids.data<std::int64_t>());

if (input_ids.get_element_type() == ov::element::i32) {
std::fill_n(input_ids.data<int32_t>(), input_ids.get_size(), pad_token_id);
std::copy_n(input_ids_token.data<int64_t>(), input_ids_token.get_size(), input_ids.data<int32_t>());
} else {
std::fill_n(input_ids.data<int64_t>(), input_ids.get_size(), pad_token_id);
std::copy_n(input_ids_token.data<int64_t>(), input_ids_token.get_size(), input_ids.data<int64_t>());
}
};

ov::Tensor input_ids(ov::element::i64, {text_embedding_batch_size, m_config.max_position_embeddings});
ov::Tensor input_ids = m_request.get_input_tensor();
input_ids.set_shape({text_embedding_batch_size, m_config.max_position_embeddings});

size_t current_batch_idx = 0;

if (do_classifier_free_guidance) {
Expand All @@ -132,7 +139,6 @@ ov::Tensor CLIPTextModelWithProjection::infer(const std::string& pos_prompt, con
{current_batch_idx + 1, m_config.max_position_embeddings}));

// text embeddings
m_request.set_tensor("input_ids", input_ids);
m_request.infer();

return m_request.get_output_tensor(0);
Expand Down
10 changes: 7 additions & 3 deletions src/cpp/src/image_generation/models/t5_encoder_model.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -80,8 +80,13 @@ ov::Tensor T5EncoderModel::infer(const std::string& pos_prompt, const std::strin
ov::Tensor input_ids_token = m_tokenizer.encode(prompt).input_ids;
size_t min_length = std::min(input_ids.get_size(), input_ids_token.get_size());

std::fill_n(input_ids.data<int32_t>(), input_ids.get_size(), pad_token_id);
std::copy_n(input_ids_token.data<std::int64_t>(), min_length, input_ids.data<std::int32_t>());
if (input_ids.get_element_type() == ov::element::i32) {
std::fill_n(input_ids.data<int32_t>(), input_ids.get_size(), pad_token_id);
std::copy_n(input_ids_token.data<int64_t>(), min_length, input_ids.data<int32_t>());
} else {
std::fill_n(input_ids.data<int64_t>(), input_ids.get_size(), pad_token_id);
std::copy_n(input_ids_token.data<int64_t>(), min_length, input_ids.data<int64_t>());
}
};

ov::Tensor input_ids = m_request.get_input_tensor();
Expand Down Expand Up @@ -114,7 +119,6 @@ ov::Tensor T5EncoderModel::infer(const std::string& pos_prompt, const std::strin
{current_batch_idx + 1, input_ids.get_shape()[1]}));

// text embeddings
m_request.set_tensor("input_ids", input_ids);
m_request.infer();

return m_request.get_output_tensor(0);
Expand Down
16 changes: 4 additions & 12 deletions src/cpp/src/image_generation/models/unet_inference_dynamic.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -12,32 +12,26 @@ namespace genai {


class UNet2DConditionModel::UNetInferenceDynamic : public UNet2DConditionModel::UNetInference {

public:

virtual void compile(std::shared_ptr<ov::Model> model, const std::string& device, const ov::AnyMap& properties) override
{
virtual void compile(std::shared_ptr<ov::Model> model, const std::string& device, const ov::AnyMap& properties) override {
ov::Core core = utils::singleton_core();

ov::CompiledModel compiled_model = core.compile_model(model, device, properties);
ov::genai::utils::print_compiled_model_properties(compiled_model, "UNet 2D Condition dynamic model");
m_request = compiled_model.create_infer_request();
}

virtual void set_hidden_states(const std::string& tensor_name, ov::Tensor encoder_hidden_states) override
{
virtual void set_hidden_states(const std::string& tensor_name, ov::Tensor encoder_hidden_states) override {
OPENVINO_ASSERT(m_request, "UNet model must be compiled first");
m_request.set_tensor(tensor_name, encoder_hidden_states);
}

virtual void set_adapters(AdapterController &adapter_controller, const AdapterConfig& adapters) override
{
virtual void set_adapters(AdapterController &adapter_controller, const AdapterConfig& adapters) override {
OPENVINO_ASSERT(m_request, "UNet model must be compiled first");
adapter_controller.apply(m_request, adapters);
}

virtual ov::Tensor infer(ov::Tensor sample, ov::Tensor timestep) override
{
virtual ov::Tensor infer(ov::Tensor sample, ov::Tensor timestep) override {
OPENVINO_ASSERT(m_request, "UNet model must be compiled first. Cannot infer non-compiled model");

m_request.set_tensor("sample", sample);
Expand All @@ -49,10 +43,8 @@ class UNet2DConditionModel::UNetInferenceDynamic : public UNet2DConditionModel::
}

private:

ov::InferRequest m_request;
};


} // namespace genai
} // namespace ov
Original file line number Diff line number Diff line change
Expand Up @@ -42,8 +42,7 @@ class UNet2DConditionModel::UNetInferenceStaticBS1 : public UNet2DConditionModel
ov::CompiledModel compiled_model = core.compile_model(model, device, properties);
ov::genai::utils::print_compiled_model_properties(compiled_model, "UNet 2D Condition batch-1 model");

for (int i = 0; i < m_native_batch_size; i++)
{
for (int i = 0; i < m_native_batch_size; i++) {
m_requests[i] = compiled_model.create_infer_request();
}
}
Expand Down
Loading