Skip to content

Commit

Permalink
Create whisper_evaluator.py (#3990)
Browse files Browse the repository at this point in the history
* Create whisper_evaluator.py

* Add OptimumIntelPipeline to whisper_evaluator.py

* Update whisper_evaluator.py

* Update OptimumIntelPipeline

* Update naming, avoid errors for long audio

* Create test_whisper_evaluator.py

* Add datasets to requirements-test.in

* Add infect to requirements-extra.in

* Add cleanup test_whisper_evaluator.py

* Cleanup of test_whisper_evaluator.py

* Skip tests if modules not available

* Update copyright

* Pylint fixes
  • Loading branch information
pwolnows authored Jan 7, 2025
1 parent 7d15a7b commit 1be1a30
Show file tree
Hide file tree
Showing 4 changed files with 282 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
"""
Copyright (c) 2024 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import re

from ...representation import CharacterRecognitionPrediction
from ...utils import UnsupportedPackage, extract_image_representations
from .base_custom_evaluator import BaseCustomEvaluator

try:
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
except ImportError as import_err:
AutoModelForSpeechSeq2Seq = UnsupportedPackage("transformers", import_err.msg)
AutoProcessor = UnsupportedPackage("transformers", import_err.msg)

try:
from transformers.pipelines.automatic_speech_recognition import AutomaticSpeechRecognitionPipeline
except ImportError as import_err:
AutomaticSpeechRecognitionPipeline = UnsupportedPackage("transformers", import_err.msg)

try:
import inflect
except ImportError as import_err:
inflect = UnsupportedPackage("inflect", import_err.msg)


class WhisperEvaluator(BaseCustomEvaluator):
VALID_PIPELINE_CLASSES = [
"GenAIWhisperPipeline",
"HFWhisperPipeline",
"OptimumWhisperPipeline"
]

def __init__(self, dataset_config, pipe, orig_config):
super().__init__(dataset_config, None, orig_config)
self.pipe = pipe
if hasattr(self.pipe, "adapter"):
self.adapter_type = self.pipe.adapter.__provider__

@classmethod
def from_configs(cls, config, delayed_model_loading=False, orig_config=None):
dataset_config = config["datasets"]
pipeline_class_name = config["pipeline_class"]
if 'device' in config['launchers'][0]:
config["_device"] = config['launchers'][0]['device']

if pipeline_class_name not in cls.VALID_PIPELINE_CLASSES:
raise ValueError(f"Invalid pipeline class name: {pipeline_class_name}. "
f"Must be one of {cls.VALID_PIPELINE_CLASSES}")

pipeline_class = globals()[pipeline_class_name]
pipe = pipeline_class(config)
return cls(dataset_config, pipe, orig_config)

def _process(self, output_callback, calculate_metrics, progress_reporter, metric_config, csv_file):
for batch_id, (batch_input_ids, batch_annotation, batch_inputs, batch_identifiers) in enumerate(self.dataset):
batch_inputs = self.preprocessor.process(batch_inputs, batch_annotation)
batch_inputs_extr, batch_meta = extract_image_representations(batch_inputs)

batch_raw_prediction, batch_prediction = self.pipe.predict(
batch_identifiers, batch_inputs_extr, batch_meta
)
metrics_result = self._get_metrics_result(batch_input_ids, batch_annotation, batch_prediction,
calculate_metrics)
if output_callback:
output_callback(batch_raw_prediction[0], metrics_result=metrics_result,
element_identifiers=batch_identifiers, dataset_indices=batch_input_ids)
self._update_progress(progress_reporter, metric_config, batch_id, len(batch_prediction), csv_file)

def release(self):
pass


def normalize_transcription(engine, text):
# Convert numbers to words
tokens = (engine.number_to_words(token) if token.isdigit() else token for token in text.split())
# Remove punctuation except for apostrophes that are in the middle of words
text = re.sub(r"\b'\b|[^\w\s]", "", " ".join(tokens))
# Remove leading, trailing, and multiple consecutive spaces, and convert to uppercase
return " ".join(text.upper().split())


class WhisperPipeline:
def __init__(self, config):
self.engine = inflect.engine()
self.pipeline = self._initialize_pipeline(config)

def _initialize_pipeline(self, config):
raise NotImplementedError

def _get_predictions(self, data, identifiers, input_meta):
raise NotImplementedError

def predict(self, identifiers, input_data, input_meta, encoder_callback=None):
predictions = []
outputs = []
for data in input_data:
transcription = self._get_predictions(data, identifiers, input_meta)
prediction_text = normalize_transcription(self.engine, transcription)
predictions.append(prediction_text)
outputs.append(CharacterRecognitionPrediction(identifiers[0], predictions[0]))
return [], outputs


class GenAIWhisperPipeline(WhisperPipeline):
def _initialize_pipeline(self, config):
try:
import openvino_genai as ov_genai # pylint: disable=C0415
except ImportError as import_error:
UnsupportedPackage("openvino_genai", import_error.msg).raise_error(self.__class__.__name__)

model_dir = config.get("_models", [None])[0]
device = config.get("_device", "CPU")
pipeline = ov_genai.WhisperPipeline(str(model_dir), device=device)
return pipeline

def _get_predictions(self, data, identifiers, input_meta):
return self.pipeline.generate(data[0], return_timestamps=True).texts[0]


class HFWhisperPipeline(WhisperPipeline):
def _initialize_pipeline(self, config):
try:
import torch # pylint: disable=C0415
except ImportError as import_error:
UnsupportedPackage("torch", import_error.msg).raise_error(self.__class__.__name__)

model_id = config.get("model_id")
device = "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
).to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipeline = AutomaticSpeechRecognitionPipeline(
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
)
return pipeline

def _get_predictions(self, data, identifiers, input_meta):
sampling_rate = input_meta[0].get("sample_rate")
sample = {"path": identifiers[0], "array": data[0], "sampling_rate": sampling_rate}
return self.pipeline(sample, return_timestamps=True)["text"]


class OptimumWhisperPipeline(WhisperPipeline):
def _initialize_pipeline(self, config):
try:
from optimum.intel.openvino import OVModelForSpeechSeq2Seq # pylint: disable=C0415
except ImportError as import_error:
UnsupportedPackage("optimum.intel.openvino", import_error.msg).raise_error(self.__class__.__name__)

device = config.get("_device", "CPU")
model_dir = config.get("_models", [None])[0]
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(str(model_dir)).to(device)
ov_processor = AutoProcessor.from_pretrained(str(model_dir))

pipeline = AutomaticSpeechRecognitionPipeline(
model=ov_model,
tokenizer=ov_processor.tokenizer,
feature_extractor=ov_processor.feature_extractor
)
return pipeline

def _get_predictions(self, data, identifiers, input_meta):
sampling_rate = input_meta[0].get("sample_rate")
sample = {"path": identifiers[0], "array": data[0], "sampling_rate": sampling_rate}
return self.pipeline(sample, return_timestamps=True)["text"]
3 changes: 3 additions & 0 deletions tools/accuracy_checker/requirements-extra.in
Original file line number Diff line number Diff line change
Expand Up @@ -48,3 +48,6 @@ lmdb>=1.2.1

# pandas datasets support
pandas>=1.1.5,<2.1

# word-based representations of numbers
inflect>=7.4.0
1 change: 1 addition & 0 deletions tools/accuracy_checker/requirements-test.in
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,4 @@ pytest-mock~=2.0
# will not include atomicwrites and thus will not work on Windows.
# So as a workaround, make the atomicwrites dependency unconditional.
atomicwrites
datasets
92 changes: 92 additions & 0 deletions tools/accuracy_checker/tests/test_whisper_evaluator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,92 @@
"""
Copyright (c) 2024-2025 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
from pathlib import Path
from unittest.mock import MagicMock, patch

import pytest
from accuracy_checker.evaluators.custom_evaluators.whisper_evaluator import (
GenAIWhisperPipeline, HFWhisperPipeline, OptimumWhisperPipeline,
WhisperEvaluator)
from datasets import load_dataset

AutoProcessor = pytest.importorskip("transformers", reason="transformers is not available").AutoProcessor
AutoTokenizer = pytest.importorskip("transformers", reason="transformers is not available").AutoTokenizer
export_tokenizer = pytest.importorskip("optimum.exporters.openvino.convert", reason="optimum.exporters.openvino.convert is not available").export_tokenizer
OVModelForSpeechSeq2Seq = pytest.importorskip("optimum.intel.openvino", reason="optimum.intel.openvino is not available").OVModelForSpeechSeq2Seq


model_id = "openai/whisper-tiny"
model_dir = Path("/tmp/whisper-tiny")

def setup_module(module):
# Setup code here
global input_data, input_meta, identifiers

# Load a single sample from the dataset
dataset = load_dataset("openslr/librispeech_asr", "clean", split="validation", streaming=True, trust_remote_code=True)
sample = next(iter(dataset))
input_data = [sample["audio"]["array"]]
input_meta = [{"sample_rate": sample["audio"]["sampling_rate"]}]
identifiers = [sample["id"]]

def teardown_module(module):
# Cleanup code here
if model_dir.exists():
for item in model_dir.iterdir():
if item.is_file():
item.unlink()
model_dir.rmdir()

def test_optimum_convert_model_to_ir():
tokenizer = AutoTokenizer.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
base_model = OVModelForSpeechSeq2Seq.from_pretrained(model_id)

model_dir.mkdir(parents=True, exist_ok=True)
base_model.save_pretrained(model_dir)
tokenizer.save_pretrained(model_dir)
processor.save_pretrained(model_dir)
export_tokenizer(tokenizer, model_dir)

assert base_model.__class__.__module__.startswith('optimum.intel.openvino')

class TestWhisperEvaluator:
def test_hf_whisper_pipeline(self):
config = {"model_id": model_id}
pipeline = HFWhisperPipeline(config)
evaluator = WhisperEvaluator(None, pipeline, None)

result = evaluator.pipe._get_predictions(input_data, identifiers, input_meta)
assert isinstance(result, str)

@pytest.mark.dependency(depends=["test_optimum_convert_model_to_ir"])
def test_genai_whisper_pipeline(self):
config = {"_models": [model_dir], "_device": "CPU"}
pipeline = GenAIWhisperPipeline(config)
evaluator = WhisperEvaluator(None, pipeline, None)

result = evaluator.pipe._get_predictions(input_data, identifiers, input_meta)
assert isinstance(result, str)

@pytest.mark.dependency(depends=["test_optimum_convert_model_to_ir"])
def test_optimum_whisper_pipeline(self):
config = {"_models": [model_dir], "_device": "CPU"}
pipeline = OptimumWhisperPipeline(config)
evaluator = WhisperEvaluator(None, pipeline, None)

result = evaluator.pipe._get_predictions(input_data, identifiers, input_meta)
assert isinstance(result, str)

0 comments on commit 1be1a30

Please sign in to comment.