Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CI][PTQ] benchmark #2819

Merged
Merged
Show file tree
Hide file tree
Changes from 12 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions constraints.txt
Original file line number Diff line number Diff line change
Expand Up @@ -20,3 +20,4 @@ pytest-mock==3.12.0
pytest-dependency==0.6.0
pytest-ordering==0.6
pytest-xdist==3.5.0
pytest-forked==1.6.0
33 changes: 20 additions & 13 deletions tests/post_training/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,9 @@ It's possible to run a suite of tests for the specific compression algorithm onl
For that append `::test_weight_compression` or `::test_ptq_quantization` to the `tests/post_training/test_quantize_conformance.py`.
For instance:

> [!WARNING]
> It is recommended to run the test with a specific test function specified, running all tests at the same time is not tested.

```bash
NUM_VAL_THREADS=8 pytest --data=<path_to_datasets> --output=./tmp tests/post_training/test_quantize_conformance.py::test_weight_compression
```
Expand All @@ -62,63 +65,67 @@ Additional arguments:
- `--subset-size=N` to force subset_size of calibration dataset
- `--batch-size=N` to use batch_size for calibration. Some of the models do not support --batch-size > 1. For such models, please, use --batch-size=1.
- `--benchmark` to collect throughput statistics, add `FPS` column to result.csv
- `--extra-columns` to add additional columns to reports.csv:
- `Stat. collection time` - time of statistic collection
- `Bias correction time` - time of bias correction
- `Validation time` - time of validation
- `--extra-columns` to add additional columns to reports.csv, like time for each algorithms
- `--memory-monitor` to using MemoryMonitor from tools/memory_monitor.py

### Examples

Run for only OV backend:

```bash
pytest --data=<path_to_datasets> -k backend_OV tests/post_training/test_quantize_conformance.py
pytest --data=<path_to_datasets> -k backend_OV tests/post_training/test_quantize_conformance.py::test_weight_compression
```

Run for only one model:

```bash
pytest --data=<path_to_datasets> -k timm/crossvit_9_240 tests/post_training/test_quantize_conformance.py
pytest --data=<path_to_datasets> -k timm/crossvit_9_240 tests/post_training/test_quantize_conformance.py::test_weight_compression
```

Run for only one model for OV backend:

```bash
pytest --data=<path_to_datasets> -k timm/crossvit_9_240_backend_OV tests/post_training/test_quantize_conformance.py
pytest --data=<path_to_datasets> -k timm/crossvit_9_240_backend_OV tests/post_training/test_quantize_conformance.py::test_weight_compression
```

Only dump models:

```bash
pytest --data=<path_to_datasets> --no-eval tests/post_training/test_quantize_conformance.py
pytest --data=<path_to_datasets> --no-eval tests/post_training/test_quantize_conformance.py::test_weight_compression
```

Fast dump models with `subset_size=1` for all models:

```bash
pytest --data=<path_to_datasets> --no-eval --subset-size 1 tests/post_training/test_quantize_conformance.py
pytest --data=<path_to_datasets> --no-eval --subset-size 1 tests/post_training/test_quantize_conformance.py::test_weight_compression
```

Run test with collection of throughput statistics:

```bash
pytest --data=<path_to_datasets> --benchmark tests/post_training/test_quantize_conformance.py
pytest --data=<path_to_datasets> --benchmark tests/post_training/test_quantize_conformance.py::test_weight_compression
```

Fast collection of throughput statistics:

```bash
pytest --data=<path_to_datasets> --benchmark --no-eval --subset-size 1 tests/post_training/test_quantize_conformance.py
pytest --data=<path_to_datasets> --benchmark --no-eval --subset-size 1 tests/post_training/test_quantize_conformance.py::test_weight_compression
```

Run test with additional columns:

```bash
pytest --data=<path_to_datasets> --extra-columns tests/post_training/test_quantize_conformance.py
pytest --data=<path_to_datasets> --extra-columns tests/post_training/test_quantize_conformance.py::test_weight_compression
```

Run test with calibration dataset having batch-size=10 for all models:

```bash
pytest --data=<path_to_datasets> --batch-size 10 tests/post_training/test_quantize_conformance.py
pytest --data=<path_to_datasets> --batch-size 10 tests/post_training/test_quantize_conformance.py::test_weight_compression
```

Run test as in benchmark jobs:

```bash
pytest --data=<path_to_datasets> --forked --no-eval --subset-size 300 --batch-size 1 --benchmark --extra-columns --memory-monitor tests/post_training/test_quantize_conformance.py::test_ptq_quantization
```
37 changes: 22 additions & 15 deletions tests/post_training/pipelines/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,6 +165,14 @@ def format_memory_usage(memory):
return int(memory)

def get_result_dict(self):
ram_data = {}
if self.compression_memory_usage_rss is None and self.compression_memory_usage_system is None:
ram_data["RAM MiB"] = self.format_memory_usage(self.compression_memory_usage)
if self.compression_memory_usage_rss is not None:
ram_data["RAM MiB"] = self.format_memory_usage(self.compression_memory_usage_rss)
if self.compression_memory_usage_system is not None:
ram_data["RAM MiB System"] = self.format_memory_usage(self.compression_memory_usage_system)

result = {
"Model": self.model,
"Backend": self.backend.value if self.backend else None,
Expand All @@ -178,16 +186,11 @@ def get_result_dict(self):
**self.stats_from_output.get_stats(),
"Total time": self.format_time(self.time_total),
"FPS": self.fps,
**ram_data,
"Status": self.status[:LIMIT_LENGTH_OF_STATUS] if self.status is not None else None,
"Build url": os.environ.get("BUILD_URL", ""),
}

if self.compression_memory_usage_rss is None and self.compression_memory_usage_system is None:
result["RAM MiB"] = self.format_memory_usage(self.compression_memory_usage)
if self.compression_memory_usage_rss is not None:
result["RAM MiB RSS"] = self.format_memory_usage(self.compression_memory_usage_rss)
if self.compression_memory_usage_system is not None:
result["RAM MiB System"] = self.format_memory_usage(self.compression_memory_usage_system)

return result


Expand Down Expand Up @@ -443,14 +446,18 @@ def run_bench(self) -> None:
"""
if not self.run_benchmark_app:
return
runner = Command(f"benchmark_app -m {self.path_compressed_ir}")
runner.run(stdout=False)
cmd_output = " ".join(runner.output)

match = re.search(r"Throughput\: (.+?) FPS", cmd_output)
if match is not None:
fps = match.group(1)
self.run_info.fps = float(fps)

try:
runner = Command(f"benchmark_app -m {self.path_compressed_ir}")
runner.run(stdout=False)
cmd_output = " ".join(runner.output)

match = re.search(r"Throughput\: (.+?) FPS", cmd_output)
if match is not None:
fps = match.group(1)
self.run_info.fps = float(fps)
except Exception as e:
print(e)

def cleanup_cache(self):
"""
Expand Down
7 changes: 4 additions & 3 deletions tests/post_training/pipelines/gpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,10 +64,11 @@ def transform_func(data):
else:

def transform_func(data):
ids = np.expand_dims(data["input_ids"], axis=0)
inputs = {
"input_ids": np.expand_dims(data["input_ids"], axis=0),
"input_ids": ids,
"attention_mask": np.expand_dims(data["attention_mask"], axis=0),
"position_ids": np.ones((1, 128), dtype=np.int64),
"position_ids": np.ones(ids.shape, dtype=np.int64),
"beam_idx": np.zeros((1,), dtype=np.int64),
}
return inputs
Expand All @@ -86,7 +87,7 @@ def preprocess_function(examples):
dataset_config_name="sst2",
preprocess_function=preprocess_function,
num_samples=num_samples,
dataset_split="validation",
dataset_split="train",
nikita-savelyevv marked this conversation as resolved.
Show resolved Hide resolved
preprocess_batch=True,
)

Expand Down
1 change: 1 addition & 0 deletions tests/post_training/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ onnx
onnxruntime
openvino
pytest
pytest-forked

librosa==0.10.0
memory-profiler==0.61.0
Expand Down
27 changes: 22 additions & 5 deletions tests/post_training/test_quantize_conformance.py
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ def fixture_wc_reference_data():


@pytest.fixture(scope="session", name="ptq_result_data")
def fixture_ptq_report_data(output_dir, run_benchmark_app):
def fixture_ptq_report_data(output_dir, run_benchmark_app, pytestconfig):
data: Dict[str, RunInfo] = {}

yield data
Expand All @@ -151,22 +151,39 @@ def fixture_ptq_report_data(output_dir, run_benchmark_app):
df = df.drop(columns=["FPS"])

output_dir.mkdir(parents=True, exist_ok=True)
df.to_csv(output_dir / "results.csv", index=False)
output_file = output_dir / "results.csv"

if pytestconfig.getoption("forked") and output_file.exists():
# When run test with --forked to run test in separate process
# Used in post_training_performance jobs
df.to_csv(output_file, index=False, mode="a", header=False)
else:
df.to_csv(output_file, index=False)


@pytest.fixture(scope="session", name="wc_result_data")
def fixture_wc_report_data(output_dir):
def fixture_wc_report_data(output_dir, run_benchmark_app, pytestconfig):
data: Dict[str, RunInfo] = {}

yield data

if data:
test_results = OrderedDict(sorted(data.items()))
df = pd.DataFrame(v.get_result_dict() for v in test_results.values())
df = df.drop(columns=["FPS", "Num FQ"])
if not run_benchmark_app:
df = df.drop(columns=["FPS"])

df = df.drop(columns=["Num FQ"])

output_dir.mkdir(parents=True, exist_ok=True)
df.to_csv(output_dir / "results.csv", index=False)
output_file = output_dir / "results.csv"

if pytestconfig.getoption("forked") and output_file.exists():
# When run test with --forked to run test in separate process
# Used in post_training_performance jobs
df.to_csv(output_file, index=False, mode="a", header=False)
else:
df.to_csv(output_file, index=False)


def maybe_skip_test_case(test_model_param, run_fp32_backend, run_torch_cuda_backend, batch_size):
Expand Down
Loading