Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MigrationCost] 搬移時間限制 實驗報告 #1772

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions docs/balancer/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,3 +13,7 @@ Astraea Balancer 是一個 Kafka 節點端的負載優化框架,其透過使
* Astraea Balancer 實驗報告
* [實驗報告#1](experiment_1.md)
* [實驗報告#2](experiment_2.md)

## 成本估計

* [搬移時間限制實驗](experiment_partitionMigrateTime.md) : kafka partition的搬移過程中會產生一些成本,在搬移前先估計出搬移partition過程中可能花費多少搬移時間,並對其做限制確保搬移不會花費超出限制的時間
179 changes: 179 additions & 0 deletions docs/balancer/experiment_partitionMigrateTime.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,179 @@
# 搬移時間限制實驗

這個測試展示目前的搬移成本估計以及限制 [#1665](https://github.com/skiptests/astraea/pull/1665)
能在進行負載平衡執行之前,計算其可能會花費的搬移時間,以及對其做限制搬移時間

## 測試情境

* 我們透過專案內的 [WebAPI](https://github.com/skiptests/astraea/blob/7596f590ae0f0ec370a6e257c10cc2aeb5fb5bf4/docs/web_server/web_api_topics_chinese.md#%E5%BB%BA%E7%AB%8B-topic) 工具來對測試叢集產生一個負載不平衡的情境

* 本實驗報告會在搬移的過程中對搬移時間做限制,並且計算限制的搬移時間與實際執行時間的誤差



## 叢集硬體環境

下圖為網路示意圖:

```
[500 Mbits Router]
┌──────────────────┐
[10 Gbits Switch] │ │
┌─────┬─────┬─────┬─────┬─────┬──┴──┬──┬──┬──┬──┐ │
B1 B2 B3 B4 B5 B6 P1 P2 P3 P4 P5 Balancer
```

每個機器負責執行的軟體:

| server/client | broker1 | broker2~6 | producer1~5 | Balancer |
| --------------- | -------------------------------------------------- | --------------------------- | ------------------------------- | --------------------- |
| 執行的工具/軟體 | Kafka Broker, Zookeeper, Prometheus, Node Exporter | Kafka Broker, Node Exporter | Performance Tool, Node Exporter | 執行 Astraea Balancer |

下表為 B0, B1, B2, B3, B4, B5 的硬體規格:

| 硬體項目 | 型號 |
| -------- | ------------------------------------------------------------ |
| CPU | Intel i9-12900K CPU 3.2G(5.2G)/30M/UHD770/125W |
| 主機板 | 華碩 ROG STRIX Z690-G GAMING WIFI(M-ATX/1H1P/Intel 2.5G+Wi-Fi 6E)14+1相數位供電 |
| 記憶體 | 美光Micron Crucial 32GB DDR5 4800 |
| 硬碟 | 威剛XPG SX8200Pro 1TB/M.2 2280/讀:3500M/寫:3000M/TLC/SMI控 * 3 |
| 網路卡 | XG-C100C [10Gigabit埠] RJ45單埠高速網路卡/PCIe介面 |

下表為執行 Astraea Balancer 的設備之硬體規格:

| 硬體項目 | 型號 |
| -------- | ---------------------------------------------------- |
| CPU | 11th Gen Intel(R) Core(TM) i7-11700K @ 3.60GHz |
| 記憶體 | KLEVV DIMM DDR4 Synchronous 2667 MHz (0.4 ns) 16GB*2 |
| 主機板 | MAG B560 TOMAHAWK WIFI (MS-7D15) |

## 叢集軟體環境

這個實驗中包含:

* 6 個 Apache Kafka Broker 節點(version 3.4.0)。
* 各個節點包含 3 個 log dir,每個有 844GB 空間的 SSD
* 1 個 kraft controller 節點(version 3.4.0)。
* 5 個 Performance Tool 施打資料

以下為建構環境的步驟:

### 建立 Kafka 叢集

請依照上述的環境建立叢集,您可以使用專案內的 [./docker/start_contoller.sh](https://github.com/skiptests/astraea/blob/main/docs/run_kafka_broker.md#broker-with-kraft) 來建立叢集

## 效能資料攝取

整個實驗的效能指標透過在每個硬體設備啟動的 node exporter 和 Prometheus進行底層硬體效能資料的攝取。

詳細可以看 [./docker/start_node_exporter.sh](https://github.com/skiptests/astraea/blob/7596f590ae0f0ec370a6e257c10cc2aeb5fb5bf4/docs/run_node_exporter.md), [./docker/start_prometheus.sh](https://github.com/skiptests/astraea/blob/7596f590ae0f0ec370a6e257c10cc2aeb5fb5bf4/docs/run_prometheus.md) 和[./docker/start_grafana.sh](https://github.com/skiptests/astraea/blob/7596f590ae0f0ec370a6e257c10cc2aeb5fb5bf4/docs/run_grafana.md)

本次實驗所使用的 Dashboard 可以在[這裡](resources/experiment_1_grafana-1663659783116.json)找到

## 執行實驗

1. 首先取得 Astraea Project

```script
git clone https://github.com/skiptests/astraea.git
cd astraea
```

2. 接著執行 Astraea Web Service,Astraea Web Service 提供一系列的功能,能幫助我們對 Kafka 進行管理和操作。

3. 執行 `./gradlew run --args="web --bootstrap.servers <broker-addresses>"` 來使用 web service,其中 `<broker-addresses>` 是
Kafka 對外服務的網路位置。

4. 完成後執行

```shell
curl -X POST http://localhost:8001/topics \
-H "Content-Type: application/json" \
-d '{ "topics": [ { "name":"imbalance-topic", "partitions": 250, "replicas": 2, "probability": 0.2 } ] }'
```

對 web service 請求建立一個負載不平衡的 topic,其名為 `imbalance-topic`,在這個情境中我們設定其有250個leader,replica備份數量為2,總共500 個 partitions。



5. 接着要開始對叢集輸入資料,我們在 P1~P5 設備上執行下面的指令以啓動 [Astraea Performance Tool](https://github.com/skiptests/astraea/blob/7596f590ae0f0ec370a6e257c10cc2aeb5fb5bf4/docs/performance_benchmark.md)

```shell
./start_app.sh performance --bootstrap.servers 192.168.103.177:25655 --topics imbalance-topic --run.until 15m --producers 10 --consumers 0 --value.size 10KiB --configs acks=0
```



### 未套用成本限制

1. 等待producer打完資料後,執行下面指令來針對進行負載平衡

```shell
curl -X POST http://localhost:8001/balancer \
-H "Content-Type: application/json" \
-d '{
"timeout": "60s",
"balancer": "org.astraea.common.balancer.algorithms.GreedyBalancer",
"balancerConfig": {
"shuffle.tweaker.min.step": "1",
"shuffle.tweaker.max.step": "10"
},
"clusterCosts": [
{
"cost": "org.astraea.common.cost.ReplicaLeaderCost",
"weight": 1
}
],
"moveCosts": [
"org.astraea.common.cost.MigrateTimeCost"
]
}'
```



測試了幾次相同情境且不限制搬移時間的搬移:

| 次數 | 1 | 2 | 3 |
| ---------------- | ---- | ---- | ---- |
| 實際搬移時間(秒) | 570 | 494 | 523 |



### 針對搬移時間做限制

1. 等待producer打完資料後,進行下面指令,這次對搬移時間來做限制在400秒,並確認實際搬移時間與限制的搬移時間誤差多少

```shell
curl -X POST http://localhost:8001/balancer \
-H "Content-Type: application/json" \
-d '{
"timeout":"30s",
"balancer":"org.astraea.common.balancer.algorithms.GreedyBalancer",
"balancerConfig":{
"shuffle.tweaker.min.step":"1",
"shuffle.tweaker.max.step":"10"
},
"moveCosts":[
"org.astraea.common.cost.BrokerDiskSpaceCost"
],
"clusterCosts":[
{
"cost":"org.astraea.common.cost.ReplicaLeaderCost",
"weight":1
}
],
"costConfig": {
"max.migrated.time.limit": "400s"
}
}'
```



| 次數 | 1 | 2 | 3 | 4 | 5 |
| ------------------ | ------------- | ------------- | ------------- | ------------- | -------------- |
| 預設的搬移時間(秒) | 400 | 399 | 399 | 398 | 338 |
| 實際搬移時間(秒) | 406 | 389 | 404 | 387 | 341 |
| 誤差 | 0.01477832512 | 0.02570694087 | 0.01237623762 | 0.02842377261 | 0.008797653959 |