Skip to content

openshift-psap/blog-microshift-gpus

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

87 Commits
 
 

Repository files navigation

blog-microshift-gpus

In this blog we will demonstrate how to enable Nvidia GPUs on an x86 system running RHEL 8.6 and Microshift.

Environment (Step 1)

Check your RHEL level and kernel level.

# cat /etc/redhat-release
Red Hat Enterprise Linux release 8.6 (Ootpa)
# uname -r 
4.18.0-372.32.1.el8_6.x86_64 

Nvidia drivers need to be installed for your specific kernel version. Precompiled kernel modules are availabe for the Nvidia drivers and have the advantage of being tested and validated against specific kernel versions. Look for your kernel version (in this example 4.18.0-372.32.1) in Nvidia's precompiled kmod driver package table; locate the matching Nvidia driver version in the table. The driver version and kernel verison string must match exactly. If your kernel version is not in the Nvidia precompiled kmod driver package table you can use the Nvidia Dynamic Kernel Module Support (DKMS) package to generate linux kernel modules for the Nvidia driver. To install the Nvidia drivers with RHEL using DKMS follow Nvidia's instructions.

Verify the GPU installed on your system (Step 2)

# lspci -nnv |grep -i nvidia

example output:
17:00.0 3D controller [0302]: NVIDIA Corporation GA100GL [A30 PCIe] [10de:20b7] (rev a1)
	Subsystem: NVIDIA Corporation Device [10de:1532]

Remove the Nouveau kernel Driver module (otherwise the Nvidia driver will fail to initialize the GPU), then install the Nvidia Driver and reboot (Step 3)

At this point in time the "latest" pre-compiled kernel modules for the Nvidia drivers support kernel version 4.18.0-372.32.1, as shown in Nvidia's precompiled kmod driver package table, so "latest" is chosen here.

# echo 'blacklist nouveau' >> /etc/modprobe.d/blacklist.conf
# dnf config-manager --add-repo=https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86_64/cuda-rhel8.repo
# dnf module install nvidia-driver:latest -y
# reboot

Verify Nvidia Drivers are installed properly (Step 4)

# nvidia-smi 

example output:

Fri Jan 13 14:29:53 2023       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.60.13    Driver Version: 525.60.13    CUDA Version: 12.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA A30          Off  | 00000000:17:00.0 Off |                    0 |
| N/A   29C    P0    35W / 165W |      0MiB / 24576MiB |     25%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

Install Podman and crun, and verify that crun is the default OCI runtime (Step 5)

# dnf install -y crun
# dnf install -y podman
# cp /usr/share/containers/containers.conf /etc/containers/containers.conf

Enable crun:
# sed -i 's/^#runtime = "crun"/runtime = "crun"/;' /etc/containers/containers.conf

Disable runc: 
# sed -i 's/^runtime = "runc"/#runtime = "runc"/;' /etc/containers/containers.conf

Make sure crun is enabled.  Look for 'runtime = "crun"' uncommented in the output from grep command below.
# grep crun /etc/containers/containers.conf

Install Nvidia Container Toolkit (Step 6)

Nvidia container toolkit supports these distributions. Now we install Nvidia Container Toolkit for RHEL 8.6 which matches our version (shown in step 1).

# curl -s -L https://nvidia.github.io/nvidia-docker/rhel8.6/nvidia-docker.repo | tee /etc/yum.repos.d/nvidia-docker.repo
# dnf install nvidia-container-toolkit -y

Add the nvidia-container SELinux policy to our machine (Step 7)

# curl -LO https://raw.githubusercontent.com/NVIDIA/dgx-selinux/master/bin/RHEL8/nvidia-container.pp
# semodule -i nvidia-container.pp
# nvidia-container-cli -k list | restorecon -v -f –

Verify that the Nvidia Drivers and Podman are configured correctly (Step 8)

# podman run --privileged -ti nvidia/cuda:11.0.3-base-ubuntu20.04 nvidia-smi


example output: 

Tue Dec 13 00:57:20 2022       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 520.61.05    Driver Version: 520.61.05    CUDA Version: 11.8     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA A30          Off  | 00000000:17:00.0 Off |                    0 |
| N/A   27C    P0    29W / 165W |      0MiB / 24576MiB |      0%      Default |
|                               |                      |             Disabled |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

Install MicroShift (Step 9)

Register your system with subscription manager

e.g. 

~]# subscription-manager register
Registering to: subscription.rhsm.redhat.com:443/subscription
Username: <your username>
Password: <your password>

Then refer to the Microshift Doc and follow steps in the installation guide.

Install Nvidia GPU Operand (Step 10)

Note: Nvidia GPU Operator is not yet available for MicroShift. So we will do the part of the Nvidia GPU Operator by installing the operand using helm. You will first need to install helm and then the Nvidia GPU Operand and make selinux change.

Selinux will prevent rootless containers from accessing the gpu without this setting.

# setsebool -P container_use_devices=true

To install helm:
# curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash

Then install Nvidia GPU Operand
# helm repo add nvdp https://nvidia.github.io/k8s-device-plugin    && helm repo update
# helm install --generate-name nvdp/nvidia-device-plugin --namespace kube-system --version=0.13.0  --set compatWithCPUManager=true

# oc get pods -n kube-system
NAME                                    READY   STATUS    RESTARTS   AGE
kube-flannel-ds-sxvz6                   1/1     Running   0          4d10h
nvidia-device-plugin-1670905057-xhjg9   1/1     Running   0          10h
# oc logs -n kube-system  nvidia-device-plugin-1670905057-xhjg9

2022/12/13 04:17:38 Retreiving plugins.
2022/12/13 04:17:38 Detected NVML platform: found NVML library
2022/12/13 04:17:38 Detected non-Tegra platform: /sys/devices/soc0/family file not found
2022/12/13 04:17:38 Starting GRPC server for 'nvidia.com/gpu'
2022/12/13 04:17:38 Starting to serve 'nvidia.com/gpu' on /var/lib/kubelet/device-plugins/nvidia-gpu.sock
2022/12/13 04:17:38 Registered device plugin for 'nvidia.com/gpu' with Kubelet

View the GPU in the node description.
# oc describe node | grep gpu
  nvidia.com/gpu:     1
  nvidia.com/gpu:     1
  nvidia.com/gpu     0           0

Run a sample gpu test (Step 11)

# cat gpu.t
apiVersion: v1
kind: Pod
metadata:
  name: gpu-operand-test
spec:
  restartPolicy: OnFailure
  containers:
  - name: cuda-vector-add
    image: "nvidia/samples:vectoradd-cuda11.2.1-ubi8"
    resources:
      limits:
         nvidia.com/gpu: 1
    securityContext:
      privileged: true


# oc create -f gpu.t

# oc logs -n default gpu-operand-test
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published