Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added Multimodal semantic search feature #359

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@ The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
## [Unreleased 2.x](https://github.com/opensearch-project/neural-search/compare/2.10...2.x)
### Features
Support sparse semantic retrieval by introducing `sparse_encoding` ingest processor and query builder ([#333](https://github.com/opensearch-project/neural-search/pull/333))
Added Multimodal semantic search feature ([#359](https://github.com/opensearch-project/neural-search/pull/359))
### Enhancements
Add `max_token_score` parameter to improve the execution efficiency for `neural_sparse` query clause ([#348](https://github.com/opensearch-project/neural-search/pull/348))
### Bug Fixes
Expand Down
1 change: 1 addition & 0 deletions build.gradle
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,7 @@ dependencies {
runtimeOnly group: 'org.reflections', name: 'reflections', version: '0.9.12'
runtimeOnly group: 'org.javassist', name: 'javassist', version: '3.29.2-GA'
runtimeOnly group: 'org.opensearch', name: 'common-utils', version: "${opensearch_build}"
runtimeOnly group: 'org.apache.commons', name: 'commons-text', version: '1.10.0'
martin-gaievski marked this conversation as resolved.
Show resolved Hide resolved
runtimeOnly group: 'com.google.code.gson', name: 'gson', version: '2.10.1'
runtimeOnly group: 'org.json', name: 'json', version: '20230227'
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,9 @@

package org.opensearch.neuralsearch.ml;

import static org.opensearch.neuralsearch.processor.TextImageEmbeddingProcessor.INPUT_IMAGE;
import static org.opensearch.neuralsearch.processor.TextImageEmbeddingProcessor.INPUT_TEXT;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
Expand Down Expand Up @@ -113,13 +116,30 @@ public void inferenceSentencesWithMapResult(
retryableInferenceSentencesWithMapResult(modelId, inputText, 0, listener);
}

/**
* Abstraction to call predict function of api of MLClient with provided targetResponse filters. It uses the
* custom model provided as modelId and run the {@link FunctionName#TEXT_EMBEDDING}. The return will be sent
* using the actionListener which will have a list of floats in the order of inputText.
*
* @param modelId {@link String}
* @param inputObjects {@link Map} of {@link String}, {@link String} on which inference needs to happen
* @param listener {@link ActionListener} which will be called when prediction is completed or errored out.
*/
public void inferenceSentences(
@NonNull final String modelId,
@NonNull final Map<String, String> inputObjects,
@NonNull final ActionListener<List<Float>> listener
) {
retryableInferenceSentencesWithSingleVectorResult(TARGET_RESPONSE_FILTERS, modelId, inputObjects, 0, listener);
}

private void retryableInferenceSentencesWithMapResult(
final String modelId,
final List<String> inputText,
final int retryTime,
final ActionListener<List<Map<String, ?>>> listener
) {
MLInput mlInput = createMLInput(null, inputText);
MLInput mlInput = createMLTextInput(null, inputText);
mlClient.predict(modelId, mlInput, ActionListener.wrap(mlOutput -> {
final List<Map<String, ?>> result = buildMapResultFromResponse(mlOutput);
listener.onResponse(result);
Expand All @@ -140,7 +160,7 @@ private void retryableInferenceSentencesWithVectorResult(
final int retryTime,
final ActionListener<List<List<Float>>> listener
) {
MLInput mlInput = createMLInput(targetResponseFilters, inputText);
MLInput mlInput = createMLTextInput(targetResponseFilters, inputText);
mlClient.predict(modelId, mlInput, ActionListener.wrap(mlOutput -> {
final List<List<Float>> vector = buildVectorFromResponse(mlOutput);
listener.onResponse(vector);
Expand All @@ -154,7 +174,7 @@ private void retryableInferenceSentencesWithVectorResult(
}));
}

private MLInput createMLInput(final List<String> targetResponseFilters, List<String> inputText) {
private MLInput createMLTextInput(final List<String> targetResponseFilters, List<String> inputText) {
final ModelResultFilter modelResultFilter = new ModelResultFilter(false, true, targetResponseFilters, null);
final MLInputDataset inputDataset = new TextDocsInputDataSet(inputText, modelResultFilter);
return new MLInput(FunctionName.TEXT_EMBEDDING, null, inputDataset);
Expand Down Expand Up @@ -191,4 +211,41 @@ private List<List<Float>> buildVectorFromResponse(MLOutput mlOutput) {
return resultMaps;
}

private List<Float> buildSingleVectorFromResponse(final MLOutput mlOutput) {
final List<List<Float>> vector = buildVectorFromResponse(mlOutput);
return vector.isEmpty() ? new ArrayList<>() : vector.get(0);
}

private void retryableInferenceSentencesWithSingleVectorResult(
final List<String> targetResponseFilters,
final String modelId,
final Map<String, String> inputObjects,
final int retryTime,
final ActionListener<List<Float>> listener
) {
MLInput mlInput = createMLMultimodalInput(targetResponseFilters, inputObjects);
mlClient.predict(modelId, mlInput, ActionListener.wrap(mlOutput -> {
final List<Float> vector = buildSingleVectorFromResponse(mlOutput);
log.debug("Inference Response for input sentence is : {} ", vector);
listener.onResponse(vector);
}, e -> {
if (RetryUtil.shouldRetry(e, retryTime)) {
final int retryTimeAdd = retryTime + 1;
retryableInferenceSentencesWithSingleVectorResult(targetResponseFilters, modelId, inputObjects, retryTimeAdd, listener);
} else {
listener.onFailure(e);
}
}));
}

private MLInput createMLMultimodalInput(final List<String> targetResponseFilters, final Map<String, String> input) {
List<String> inputText = new ArrayList<>();
inputText.add(input.get(INPUT_TEXT));
if (input.containsKey(INPUT_IMAGE)) {
martin-gaievski marked this conversation as resolved.
Show resolved Hide resolved
inputText.add(input.get(INPUT_IMAGE));
}
final ModelResultFilter modelResultFilter = new ModelResultFilter(false, true, targetResponseFilters, null);
final MLInputDataset inputDataset = new TextDocsInputDataSet(inputText, modelResultFilter);
return new MLInput(FunctionName.TEXT_EMBEDDING, null, inputDataset);
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -33,11 +33,13 @@
import org.opensearch.neuralsearch.processor.NormalizationProcessorWorkflow;
import org.opensearch.neuralsearch.processor.SparseEncodingProcessor;
import org.opensearch.neuralsearch.processor.TextEmbeddingProcessor;
import org.opensearch.neuralsearch.processor.TextImageEmbeddingProcessor;
import org.opensearch.neuralsearch.processor.combination.ScoreCombinationFactory;
import org.opensearch.neuralsearch.processor.combination.ScoreCombiner;
import org.opensearch.neuralsearch.processor.factory.NormalizationProcessorFactory;
import org.opensearch.neuralsearch.processor.factory.SparseEncodingProcessorFactory;
import org.opensearch.neuralsearch.processor.factory.TextEmbeddingProcessorFactory;
import org.opensearch.neuralsearch.processor.factory.TextImageEmbeddingProcessorFactory;
import org.opensearch.neuralsearch.processor.normalization.ScoreNormalizationFactory;
import org.opensearch.neuralsearch.processor.normalization.ScoreNormalizer;
import org.opensearch.neuralsearch.query.HybridQueryBuilder;
Expand Down Expand Up @@ -106,7 +108,9 @@ public Map<String, Processor.Factory> getProcessors(Processor.Parameters paramet
TextEmbeddingProcessor.TYPE,
new TextEmbeddingProcessorFactory(clientAccessor, parameters.env),
SparseEncodingProcessor.TYPE,
new SparseEncodingProcessorFactory(clientAccessor, parameters.env)
new SparseEncodingProcessorFactory(clientAccessor, parameters.env),
TextImageEmbeddingProcessor.TYPE,
new TextImageEmbeddingProcessorFactory(clientAccessor, parameters.env, parameters.ingestService.getClusterService())
);
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -249,7 +249,7 @@ protected void setVectorFieldsToDocument(IngestDocument ingestDocument, Map<Stri
@SuppressWarnings({ "unchecked" })
@VisibleForTesting
Map<String, Object> buildNLPResult(Map<String, Object> processorMap, List<?> results, Map<String, Object> sourceAndMetadataMap) {
InferenceProcessor.IndexWrapper indexWrapper = new InferenceProcessor.IndexWrapper(0);
IndexWrapper indexWrapper = new IndexWrapper(0);
Map<String, Object> result = new LinkedHashMap<>();
for (Map.Entry<String, Object> knnMapEntry : processorMap.entrySet()) {
String knnKey = knnMapEntry.getKey();
Expand All @@ -270,7 +270,7 @@ private void putNLPResultToSourceMapForMapType(
String processorKey,
Object sourceValue,
List<?> results,
InferenceProcessor.IndexWrapper indexWrapper,
IndexWrapper indexWrapper,
Map<String, Object> sourceAndMetadataMap
) {
if (processorKey == null || sourceAndMetadataMap == null || sourceValue == null) return;
Expand All @@ -291,11 +291,7 @@ private void putNLPResultToSourceMapForMapType(
}
}

private List<Map<String, Object>> buildNLPResultForListType(
List<String> sourceValue,
List<?> results,
InferenceProcessor.IndexWrapper indexWrapper
) {
private List<Map<String, Object>> buildNLPResultForListType(List<String> sourceValue, List<?> results, IndexWrapper indexWrapper) {
List<Map<String, Object>> keyToResult = new ArrayList<>();
IntStream.range(0, sourceValue.size())
.forEachOrdered(x -> keyToResult.add(ImmutableMap.of(listTypeNestedMapKey, results.get(indexWrapper.index++))));
Expand Down
Loading