Skip to content

Commit

Permalink
merge from main
Browse files Browse the repository at this point in the history
Signed-off-by: xinyual <[email protected]>
  • Loading branch information
xinyual committed Oct 17, 2023
2 parents 43fabfb + 04c1e05 commit 48ffb40
Show file tree
Hide file tree
Showing 22 changed files with 1,304 additions and 47 deletions.
1 change: 1 addition & 0 deletions build.gradle
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,7 @@ dependencies {
runtimeOnly group: 'org.reflections', name: 'reflections', version: '0.9.12'
runtimeOnly group: 'org.javassist', name: 'javassist', version: '3.29.2-GA'
runtimeOnly group: 'org.opensearch', name: 'common-utils', version: "${opensearch_build}"
runtimeOnly group: 'org.apache.commons', name: 'commons-text', version: '1.10.0'
runtimeOnly group: 'com.google.code.gson', name: 'gson', version: '2.10.1'
runtimeOnly group: 'org.json', name: 'json', version: '20230227'
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,9 @@

package org.opensearch.neuralsearch.ml;

import static org.opensearch.neuralsearch.processor.TextImageEmbeddingProcessor.INPUT_IMAGE;
import static org.opensearch.neuralsearch.processor.TextImageEmbeddingProcessor.INPUT_TEXT;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
Expand Down Expand Up @@ -113,13 +116,30 @@ public void inferenceSentencesWithMapResult(
retryableInferenceSentencesWithMapResult(modelId, inputText, 0, listener);
}

/**
* Abstraction to call predict function of api of MLClient with provided targetResponse filters. It uses the
* custom model provided as modelId and run the {@link FunctionName#TEXT_EMBEDDING}. The return will be sent
* using the actionListener which will have a list of floats in the order of inputText.
*
* @param modelId {@link String}
* @param inputObjects {@link Map} of {@link String}, {@link String} on which inference needs to happen
* @param listener {@link ActionListener} which will be called when prediction is completed or errored out.
*/
public void inferenceSentences(
@NonNull final String modelId,
@NonNull final Map<String, String> inputObjects,
@NonNull final ActionListener<List<Float>> listener
) {
retryableInferenceSentencesWithSingleVectorResult(TARGET_RESPONSE_FILTERS, modelId, inputObjects, 0, listener);
}

private void retryableInferenceSentencesWithMapResult(
final String modelId,
final List<String> inputText,
final int retryTime,
final ActionListener<List<Map<String, ?>>> listener
) {
MLInput mlInput = createMLInput(null, inputText);
MLInput mlInput = createMLTextInput(null, inputText);
mlClient.predict(modelId, mlInput, ActionListener.wrap(mlOutput -> {
final List<Map<String, ?>> result = buildMapResultFromResponse(mlOutput);
listener.onResponse(result);
Expand All @@ -140,7 +160,7 @@ private void retryableInferenceSentencesWithVectorResult(
final int retryTime,
final ActionListener<List<List<Float>>> listener
) {
MLInput mlInput = createMLInput(targetResponseFilters, inputText);
MLInput mlInput = createMLTextInput(targetResponseFilters, inputText);
mlClient.predict(modelId, mlInput, ActionListener.wrap(mlOutput -> {
final List<List<Float>> vector = buildVectorFromResponse(mlOutput);
listener.onResponse(vector);
Expand All @@ -154,7 +174,7 @@ private void retryableInferenceSentencesWithVectorResult(
}));
}

private MLInput createMLInput(final List<String> targetResponseFilters, List<String> inputText) {
private MLInput createMLTextInput(final List<String> targetResponseFilters, List<String> inputText) {
final ModelResultFilter modelResultFilter = new ModelResultFilter(false, true, targetResponseFilters, null);
final MLInputDataset inputDataset = new TextDocsInputDataSet(inputText, modelResultFilter);
return new MLInput(FunctionName.TEXT_EMBEDDING, null, inputDataset);
Expand Down Expand Up @@ -191,4 +211,41 @@ private List<List<Float>> buildVectorFromResponse(MLOutput mlOutput) {
return resultMaps;
}

private List<Float> buildSingleVectorFromResponse(final MLOutput mlOutput) {
final List<List<Float>> vector = buildVectorFromResponse(mlOutput);
return vector.isEmpty() ? new ArrayList<>() : vector.get(0);
}

private void retryableInferenceSentencesWithSingleVectorResult(
final List<String> targetResponseFilters,
final String modelId,
final Map<String, String> inputObjects,
final int retryTime,
final ActionListener<List<Float>> listener
) {
MLInput mlInput = createMLMultimodalInput(targetResponseFilters, inputObjects);
mlClient.predict(modelId, mlInput, ActionListener.wrap(mlOutput -> {
final List<Float> vector = buildSingleVectorFromResponse(mlOutput);
log.debug("Inference Response for input sentence is : {} ", vector);
listener.onResponse(vector);
}, e -> {
if (RetryUtil.shouldRetry(e, retryTime)) {
final int retryTimeAdd = retryTime + 1;
retryableInferenceSentencesWithSingleVectorResult(targetResponseFilters, modelId, inputObjects, retryTimeAdd, listener);
} else {
listener.onFailure(e);
}
}));
}

private MLInput createMLMultimodalInput(final List<String> targetResponseFilters, final Map<String, String> input) {
List<String> inputText = new ArrayList<>();
inputText.add(input.get(INPUT_TEXT));
if (input.containsKey(INPUT_IMAGE)) {
inputText.add(input.get(INPUT_IMAGE));
}
final ModelResultFilter modelResultFilter = new ModelResultFilter(false, true, targetResponseFilters, null);
final MLInputDataset inputDataset = new TextDocsInputDataSet(inputText, modelResultFilter);
return new MLInput(FunctionName.TEXT_EMBEDDING, null, inputDataset);
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -33,11 +33,13 @@
import org.opensearch.neuralsearch.processor.NormalizationProcessorWorkflow;
import org.opensearch.neuralsearch.processor.SparseEncodingProcessor;
import org.opensearch.neuralsearch.processor.TextEmbeddingProcessor;
import org.opensearch.neuralsearch.processor.TextImageEmbeddingProcessor;
import org.opensearch.neuralsearch.processor.combination.ScoreCombinationFactory;
import org.opensearch.neuralsearch.processor.combination.ScoreCombiner;
import org.opensearch.neuralsearch.processor.factory.NormalizationProcessorFactory;
import org.opensearch.neuralsearch.processor.factory.SparseEncodingProcessorFactory;
import org.opensearch.neuralsearch.processor.factory.TextEmbeddingProcessorFactory;
import org.opensearch.neuralsearch.processor.factory.TextImageEmbeddingProcessorFactory;
import org.opensearch.neuralsearch.processor.normalization.ScoreNormalizationFactory;
import org.opensearch.neuralsearch.processor.normalization.ScoreNormalizer;
import org.opensearch.neuralsearch.query.HybridQueryBuilder;
Expand Down Expand Up @@ -106,7 +108,9 @@ public Map<String, Processor.Factory> getProcessors(Processor.Parameters paramet
TextEmbeddingProcessor.TYPE,
new TextEmbeddingProcessorFactory(clientAccessor, parameters.env),
SparseEncodingProcessor.TYPE,
new SparseEncodingProcessorFactory(clientAccessor, parameters.env)
new SparseEncodingProcessorFactory(clientAccessor, parameters.env),
TextImageEmbeddingProcessor.TYPE,
new TextImageEmbeddingProcessorFactory(clientAccessor, parameters.env, parameters.ingestService.getClusterService())
);
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -249,7 +249,7 @@ protected void setVectorFieldsToDocument(IngestDocument ingestDocument, Map<Stri
@SuppressWarnings({ "unchecked" })
@VisibleForTesting
Map<String, Object> buildNLPResult(Map<String, Object> processorMap, List<?> results, Map<String, Object> sourceAndMetadataMap) {
InferenceProcessor.IndexWrapper indexWrapper = new InferenceProcessor.IndexWrapper(0);
IndexWrapper indexWrapper = new IndexWrapper(0);
Map<String, Object> result = new LinkedHashMap<>();
for (Map.Entry<String, Object> knnMapEntry : processorMap.entrySet()) {
String knnKey = knnMapEntry.getKey();
Expand All @@ -270,7 +270,7 @@ private void putNLPResultToSourceMapForMapType(
String processorKey,
Object sourceValue,
List<?> results,
InferenceProcessor.IndexWrapper indexWrapper,
IndexWrapper indexWrapper,
Map<String, Object> sourceAndMetadataMap
) {
if (processorKey == null || sourceAndMetadataMap == null || sourceValue == null) return;
Expand All @@ -291,11 +291,7 @@ private void putNLPResultToSourceMapForMapType(
}
}

private List<Map<String, Object>> buildNLPResultForListType(
List<String> sourceValue,
List<?> results,
InferenceProcessor.IndexWrapper indexWrapper
) {
private List<Map<String, Object>> buildNLPResultForListType(List<String> sourceValue, List<?> results, IndexWrapper indexWrapper) {
List<Map<String, Object>> keyToResult = new ArrayList<>();
IntStream.range(0, sourceValue.size())
.forEachOrdered(x -> keyToResult.add(ImmutableMap.of(listTypeNestedMapKey, results.get(indexWrapper.index++))));
Expand Down
Loading

0 comments on commit 48ffb40

Please sign in to comment.