Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Backport feature/multi_tenancy] BackPort PR for 3219 #3231

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@

import org.opensearch.ml.common.connector.functions.preprocess.BedrockEmbeddingPreProcessFunction;
import org.opensearch.ml.common.connector.functions.preprocess.CohereEmbeddingPreProcessFunction;
import org.opensearch.ml.common.connector.functions.preprocess.CohereMultiModalEmbeddingPreProcessFunction;
import org.opensearch.ml.common.connector.functions.preprocess.CohereRerankPreProcessFunction;
import org.opensearch.ml.common.connector.functions.preprocess.MultiModalConnectorPreProcessFunction;
import org.opensearch.ml.common.connector.functions.preprocess.OpenAIEmbeddingPreProcessFunction;
Expand All @@ -21,6 +22,7 @@ public class MLPreProcessFunction {

private static final Map<String, Function<MLInput, RemoteInferenceInputDataSet>> PRE_PROCESS_FUNCTIONS = new HashMap<>();
public static final String TEXT_DOCS_TO_COHERE_EMBEDDING_INPUT = "connector.pre_process.cohere.embedding";
public static final String IMAGE_TO_COHERE_MULTI_MODAL_EMBEDDING_INPUT = "connector.pre_process.cohere.multimodal_embedding";
public static final String TEXT_DOCS_TO_OPENAI_EMBEDDING_INPUT = "connector.pre_process.openai.embedding";
public static final String TEXT_DOCS_TO_BEDROCK_EMBEDDING_INPUT = "connector.pre_process.bedrock.embedding";
public static final String TEXT_IMAGE_TO_BEDROCK_EMBEDDING_INPUT = "connector.pre_process.multimodal.embedding";
Expand All @@ -37,7 +39,10 @@ public class MLPreProcessFunction {
BedrockEmbeddingPreProcessFunction bedrockEmbeddingPreProcessFunction = new BedrockEmbeddingPreProcessFunction();
CohereRerankPreProcessFunction cohereRerankPreProcessFunction = new CohereRerankPreProcessFunction();
MultiModalConnectorPreProcessFunction multiModalEmbeddingPreProcessFunction = new MultiModalConnectorPreProcessFunction();
CohereMultiModalEmbeddingPreProcessFunction cohereMultiModalEmbeddingPreProcessFunction =
new CohereMultiModalEmbeddingPreProcessFunction();
PRE_PROCESS_FUNCTIONS.put(TEXT_DOCS_TO_COHERE_EMBEDDING_INPUT, cohereEmbeddingPreProcessFunction);
PRE_PROCESS_FUNCTIONS.put(IMAGE_TO_COHERE_MULTI_MODAL_EMBEDDING_INPUT, cohereMultiModalEmbeddingPreProcessFunction);
PRE_PROCESS_FUNCTIONS.put(TEXT_IMAGE_TO_BEDROCK_EMBEDDING_INPUT, multiModalEmbeddingPreProcessFunction);
PRE_PROCESS_FUNCTIONS.put(TEXT_DOCS_TO_OPENAI_EMBEDDING_INPUT, openAIEmbeddingPreProcessFunction);
PRE_PROCESS_FUNCTIONS.put(TEXT_DOCS_TO_DEFAULT_EMBEDDING_INPUT, openAIEmbeddingPreProcessFunction);
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
/*
* Copyright OpenSearch Contributors
* SPDX-License-Identifier: Apache-2.0
*/

package org.opensearch.ml.common.connector.functions.preprocess;

import static org.opensearch.ml.common.utils.StringUtils.convertScriptStringToJsonString;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

import org.opensearch.ml.common.dataset.TextDocsInputDataSet;
import org.opensearch.ml.common.dataset.remote.RemoteInferenceInputDataSet;
import org.opensearch.ml.common.input.MLInput;

public class CohereMultiModalEmbeddingPreProcessFunction extends ConnectorPreProcessFunction {

public CohereMultiModalEmbeddingPreProcessFunction() {
this.returnDirectlyForRemoteInferenceInput = true;
}

@Override
public void validate(MLInput mlInput) {
validateTextDocsInput(mlInput);
List<String> docs = ((TextDocsInputDataSet) mlInput.getInputDataset()).getDocs();
if (docs == null || docs.isEmpty() || (docs.size() == 1 && docs.get(0) == null)) {
throw new IllegalArgumentException("No image provided");
}
}

@Override
public RemoteInferenceInputDataSet process(MLInput mlInput) {
TextDocsInputDataSet inputData = (TextDocsInputDataSet) mlInput.getInputDataset();
Map<String, String> parametersMap = new HashMap<>();

/**
* Cohere multi-modal model expects either image or texts, not both.
* For image, customer can use this pre-process function. For texts, customer can use
* connector.pre_process.cohere.embedding
* Cohere expects An array of image data URIs for the model to embed. Maximum number of images per call is 1.
*/
parametersMap.put("images", inputData.getDocs().get(0));
return RemoteInferenceInputDataSet
.builder()
.parameters(convertScriptStringToJsonString(Map.of("parameters", parametersMap)))
.build();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
/*
* Copyright OpenSearch Contributors
* SPDX-License-Identifier: Apache-2.0
*/

package org.opensearch.ml.common.connector.functions.preprocess;

import static org.junit.Assert.assertEquals;

import java.util.ArrayList;
import java.util.List;
import java.util.Map;

import org.junit.Before;
import org.junit.Rule;
import org.junit.Test;
import org.junit.rules.ExpectedException;
import org.opensearch.ml.common.FunctionName;
import org.opensearch.ml.common.dataset.TextDocsInputDataSet;
import org.opensearch.ml.common.dataset.TextSimilarityInputDataSet;
import org.opensearch.ml.common.dataset.remote.RemoteInferenceInputDataSet;
import org.opensearch.ml.common.input.MLInput;

public class CohereMultiModalEmbeddingPreProcessFunctionTest {
@Rule
public ExpectedException exceptionRule = ExpectedException.none();

CohereMultiModalEmbeddingPreProcessFunction function;

TextSimilarityInputDataSet textSimilarityInputDataSet;
TextDocsInputDataSet textDocsInputDataSet;
RemoteInferenceInputDataSet remoteInferenceInputDataSet;

MLInput textEmbeddingInput;
MLInput textSimilarityInput;
MLInput remoteInferenceInput;

@Before
public void setUp() {
function = new CohereMultiModalEmbeddingPreProcessFunction();
textSimilarityInputDataSet = TextSimilarityInputDataSet.builder().queryText("test").textDocs(List.of("hello")).build();
textDocsInputDataSet = TextDocsInputDataSet.builder().docs(List.of("imageString")).build();
remoteInferenceInputDataSet = RemoteInferenceInputDataSet.builder().parameters(Map.of("images", "value2")).build();

textEmbeddingInput = MLInput.builder().algorithm(FunctionName.TEXT_EMBEDDING).inputDataset(textDocsInputDataSet).build();
textSimilarityInput = MLInput.builder().algorithm(FunctionName.TEXT_SIMILARITY).inputDataset(textSimilarityInputDataSet).build();
remoteInferenceInput = MLInput.builder().algorithm(FunctionName.REMOTE).inputDataset(remoteInferenceInputDataSet).build();
}

@Test
public void testProcess_whenNullInput_expectIllegalArgumentException() {
exceptionRule.expect(IllegalArgumentException.class);
exceptionRule.expectMessage("Preprocess function input can't be null");
function.apply(null);
}

@Test
public void testProcess_whenWrongInput_expectIllegalArgumentException() {
exceptionRule.expect(IllegalArgumentException.class);
exceptionRule.expectMessage("This pre_process_function can only support TextDocsInputDataSet");
function.apply(textSimilarityInput);
}

@Test
public void testProcess_whenCorrectInput_expectCorrectOutput() {
MLInput mlInput = MLInput.builder().algorithm(FunctionName.TEXT_EMBEDDING).inputDataset(textDocsInputDataSet).build();
RemoteInferenceInputDataSet dataSet = function.apply(mlInput);
assertEquals(1, dataSet.getParameters().size());
assertEquals("imageString", dataSet.getParameters().get("images"));

}

@Test
public void testProcess_whenInputTextIsnull_expectIllegalArgumentException() {
exceptionRule.expect(IllegalArgumentException.class);
exceptionRule.expectMessage("No image provided");
List<String> docs = new ArrayList<>();
docs.add(null);
TextDocsInputDataSet textDocsInputDataSet1 = TextDocsInputDataSet.builder().docs(docs).build();
MLInput mlInput = MLInput.builder().algorithm(FunctionName.TEXT_EMBEDDING).inputDataset(textDocsInputDataSet1).build();
RemoteInferenceInputDataSet dataSet = function.apply(mlInput);
}

@Test
public void testProcess_whenRemoteInferenceInput_expectRemoteInferenceInputDataSet() {
RemoteInferenceInputDataSet dataSet = function.apply(remoteInferenceInput);
assertEquals(remoteInferenceInputDataSet, dataSet);
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ public class MultiModalConnectorPreProcessFunctionTest {
@Before
public void setUp() {
function = new MultiModalConnectorPreProcessFunction();
textSimilarityInputDataSet = TextSimilarityInputDataSet.builder().queryText("test").textDocs(Arrays.asList("hello")).build();
textSimilarityInputDataSet = TextSimilarityInputDataSet.builder().queryText("test").textDocs(List.of("hello")).build();
textDocsInputDataSet = TextDocsInputDataSet.builder().docs(Arrays.asList("hello", "world")).build();
remoteInferenceInputDataSet = RemoteInferenceInputDataSet.builder().parameters(Map.of("inputText", "value1", "inputImage", "value2")).build();

Expand Down
Loading