-
Notifications
You must be signed in to change notification settings - Fork 141
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
adding multi-modal pre-processor for cohere #3219
Merged
Merged
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
50 changes: 50 additions & 0 deletions
50
...ml/common/connector/functions/preprocess/CohereMultiModalEmbeddingPreProcessFunction.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
/* | ||
* Copyright OpenSearch Contributors | ||
* SPDX-License-Identifier: Apache-2.0 | ||
*/ | ||
|
||
package org.opensearch.ml.common.connector.functions.preprocess; | ||
|
||
import static org.opensearch.ml.common.utils.StringUtils.convertScriptStringToJsonString; | ||
|
||
import java.util.HashMap; | ||
import java.util.List; | ||
import java.util.Map; | ||
|
||
import org.opensearch.ml.common.dataset.TextDocsInputDataSet; | ||
import org.opensearch.ml.common.dataset.remote.RemoteInferenceInputDataSet; | ||
import org.opensearch.ml.common.input.MLInput; | ||
|
||
public class CohereMultiModalEmbeddingPreProcessFunction extends ConnectorPreProcessFunction { | ||
|
||
public CohereMultiModalEmbeddingPreProcessFunction() { | ||
this.returnDirectlyForRemoteInferenceInput = true; | ||
} | ||
|
||
@Override | ||
public void validate(MLInput mlInput) { | ||
validateTextDocsInput(mlInput); | ||
List<String> docs = ((TextDocsInputDataSet) mlInput.getInputDataset()).getDocs(); | ||
if (docs.isEmpty() || (docs.size() == 1 && docs.getFirst() == null)) { | ||
throw new IllegalArgumentException("No image provided"); | ||
} | ||
} | ||
|
||
@Override | ||
public RemoteInferenceInputDataSet process(MLInput mlInput) { | ||
TextDocsInputDataSet inputData = (TextDocsInputDataSet) mlInput.getInputDataset(); | ||
Map<String, String> parametersMap = new HashMap<>(); | ||
|
||
/** | ||
* Cohere multi-modal model expects either image or texts, not both. | ||
* For image, customer can use this pre-process function. For texts, customer can use | ||
* connector.pre_process.cohere.embedding | ||
* Cohere expects An array of image data URIs for the model to embed. Maximum number of images per call is 1. | ||
*/ | ||
parametersMap.put("images", inputData.getDocs().getFirst()); | ||
return RemoteInferenceInputDataSet | ||
.builder() | ||
.parameters(convertScriptStringToJsonString(Map.of("parameters", parametersMap))) | ||
.build(); | ||
} | ||
} |
89 changes: 89 additions & 0 deletions
89
...ommon/connector/functions/preprocess/CohereMultiModalEmbeddingPreProcessFunctionTest.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
/* | ||
* Copyright OpenSearch Contributors | ||
* SPDX-License-Identifier: Apache-2.0 | ||
*/ | ||
|
||
package org.opensearch.ml.common.connector.functions.preprocess; | ||
|
||
import static org.junit.Assert.assertEquals; | ||
|
||
import java.util.ArrayList; | ||
import java.util.List; | ||
import java.util.Map; | ||
|
||
import org.junit.Before; | ||
import org.junit.Rule; | ||
import org.junit.Test; | ||
import org.junit.rules.ExpectedException; | ||
import org.opensearch.ml.common.FunctionName; | ||
import org.opensearch.ml.common.dataset.TextDocsInputDataSet; | ||
import org.opensearch.ml.common.dataset.TextSimilarityInputDataSet; | ||
import org.opensearch.ml.common.dataset.remote.RemoteInferenceInputDataSet; | ||
import org.opensearch.ml.common.input.MLInput; | ||
|
||
public class CohereMultiModalEmbeddingPreProcessFunctionTest { | ||
@Rule | ||
public ExpectedException exceptionRule = ExpectedException.none(); | ||
|
||
CohereMultiModalEmbeddingPreProcessFunction function; | ||
|
||
TextSimilarityInputDataSet textSimilarityInputDataSet; | ||
TextDocsInputDataSet textDocsInputDataSet; | ||
RemoteInferenceInputDataSet remoteInferenceInputDataSet; | ||
|
||
MLInput textEmbeddingInput; | ||
MLInput textSimilarityInput; | ||
MLInput remoteInferenceInput; | ||
|
||
@Before | ||
public void setUp() { | ||
function = new CohereMultiModalEmbeddingPreProcessFunction(); | ||
textSimilarityInputDataSet = TextSimilarityInputDataSet.builder().queryText("test").textDocs(List.of("hello")).build(); | ||
textDocsInputDataSet = TextDocsInputDataSet.builder().docs(List.of("imageString")).build(); | ||
remoteInferenceInputDataSet = RemoteInferenceInputDataSet.builder().parameters(Map.of("images", "value2")).build(); | ||
|
||
textEmbeddingInput = MLInput.builder().algorithm(FunctionName.TEXT_EMBEDDING).inputDataset(textDocsInputDataSet).build(); | ||
textSimilarityInput = MLInput.builder().algorithm(FunctionName.TEXT_SIMILARITY).inputDataset(textSimilarityInputDataSet).build(); | ||
remoteInferenceInput = MLInput.builder().algorithm(FunctionName.REMOTE).inputDataset(remoteInferenceInputDataSet).build(); | ||
} | ||
|
||
@Test | ||
public void testProcess_whenNullInput_expectIllegalArgumentException() { | ||
exceptionRule.expect(IllegalArgumentException.class); | ||
exceptionRule.expectMessage("Preprocess function input can't be null"); | ||
function.apply(null); | ||
} | ||
|
||
@Test | ||
public void testProcess_whenWrongInput_expectIllegalArgumentException() { | ||
exceptionRule.expect(IllegalArgumentException.class); | ||
exceptionRule.expectMessage("This pre_process_function can only support TextDocsInputDataSet"); | ||
function.apply(textSimilarityInput); | ||
} | ||
|
||
@Test | ||
public void testProcess_whenCorrectInput_expectCorrectOutput() { | ||
MLInput mlInput = MLInput.builder().algorithm(FunctionName.TEXT_EMBEDDING).inputDataset(textDocsInputDataSet).build(); | ||
RemoteInferenceInputDataSet dataSet = function.apply(mlInput); | ||
assertEquals(1, dataSet.getParameters().size()); | ||
assertEquals("imageString", dataSet.getParameters().get("images")); | ||
|
||
} | ||
|
||
@Test | ||
public void testProcess_whenInputTextIsnull_expectIllegalArgumentException() { | ||
exceptionRule.expect(IllegalArgumentException.class); | ||
exceptionRule.expectMessage("No image provided"); | ||
List<String> docs = new ArrayList<>(); | ||
docs.add(null); | ||
TextDocsInputDataSet textDocsInputDataSet1 = TextDocsInputDataSet.builder().docs(docs).build(); | ||
MLInput mlInput = MLInput.builder().algorithm(FunctionName.TEXT_EMBEDDING).inputDataset(textDocsInputDataSet1).build(); | ||
RemoteInferenceInputDataSet dataSet = function.apply(mlInput); | ||
} | ||
|
||
@Test | ||
public void testProcess_whenRemoteInferenceInput_expectRemoteInferenceInputDataSet() { | ||
RemoteInferenceInputDataSet dataSet = function.apply(remoteInferenceInput); | ||
assertEquals(remoteInferenceInputDataSet, dataSet); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Only support image input? Should we also consider support text input ?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Cohere multi-modal doesn't support text with image input. Either image input or text input. Example notebook
For text input, we could use our regular one:
connector.pre_process.cohere.embedding
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Got it. Add some java doc to explain this?
Does the model support multiple images or just one ?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Just one per request.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
An array of image data URIs for the model to embed. Maximum number of images per call is 1.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Got it, suggest add more java doc to explain these details