Skip to content

Commit

Permalink
Merge branch 'main' into trace-analytics-update
Browse files Browse the repository at this point in the history
  • Loading branch information
vagimeli authored Jun 20, 2024
2 parents 0018777 + 14b8afc commit 6cc7072
Show file tree
Hide file tree
Showing 2 changed files with 169 additions and 0 deletions.
168 changes: 168 additions & 0 deletions _ml-commons-plugin/agents-tools/tools/connector-tool.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
---
layout: default
title: Connector tool
has_children: false
has_toc: false
nav_order: 20
parent: Tools
grand_parent: Agents and tools
---

<!-- vale off -->
# Connector tool
**Introduced 2.15**
{: .label .label-purple }
<!-- vale on -->

The `ConnectorTool` uses a [connector]({{site.url}}{{site.baseurl}}/ml-commons-plugin/remote-models/connectors/) to call any REST API function. For example, you can use a `ConnectorTool` to call a Lambda function through its REST API interface.

## Step 1: Register a connector with an execute action

The `ConnectorTool` can only run an `execute` action within a connector. Before you can create a `ConnectorTool`, you need to configure a connector and provide an `execute` action in the `actions` array. The `execute` action is used to invoke a function at a REST API endpoint. It is similar to the `predict` action, which is used to invoke a machine learning (ML) model.

For this example, you'll create a connector for a simple AWS Lambda function that accepts two integers and returns their sum. This function is hosted on a dedicated endpoint with a specific URL, which you'll provide in the `url` parameter. For more information, see [Lambda function URLs](https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html).

To create a connector, send the following request:

```json
POST _plugins/_ml/connectors/_create
{
"name": "Lambda connector of simple calculator",
"description": "Demo connector of lambda function",
"version": 1,
"protocol": "aws_sigv4",
"parameters": {
"region": "YOUR AWS REGION",
"service_name": "lambda"
},
"credential": {
"access_key": "YOUR ACCESS KEY",
"secret_key": "YOUR SECRET KEY",
"session_token": "YOUR SESSION TOKEN"
},
"actions": [
{
"action_type": "execute",
"method": "POST",
"url": "YOUR LAMBDA FUNCTION URL",
"headers": {
"content-type": "application/json"
},
"request_body": "{ \"number1\":\"${parameters.number1}\", \"number2\":\"${parameters.number2}\" }"
}
]
}
```
{% include copy-curl.html %}

OpenSearch responds with a connector ID:

```json
{
"connector_id": "Zz1XEJABXWrLmr4mewEF"
}
```

## Step 2: Register a flow agent that will run the ConnectorTool

For this example, the Lambda function adds the two input numbers and returns their sum in the `result` field:

```json
{
"result": 5
}
```

By default, the `ConnectorTool` expects the response from the Lambda function to contain a field named `response`. However, in this example the Lambda function response doesn't include a `response` field. To retrieve the result from the `result` field instead, you need to provide a `response_filter`, specifying the [JSON path](https://github.com/json-path/JsonPath) to the `result` field (`$.result`). Using the `response_filter`, the `ConnectorTool` will retrieve the result with the specified JSON path and return it in the `response` field.

To configure the Lambda function workflow, create a flow agent. A flow agent runs a sequence of tools in order and returns the last tool's output. To create a flow agent, send the following register agent request, providing the connector ID from the previous step and a `response_filter`:

```json
POST /_plugins/_ml/agents/_register
{
"name": "Demo agent of Lambda connector",
"type": "flow",
"description": "This is a demo agent",
"app_type": "demo",
"tools": [
{
"type": "ConnectorTool",
"name": "lambda_function",
"parameters": {
"connector_id": "YOUR CONNECTOR ID",
"response_filter": "$.result"
}
}
]
}
```
{% include copy-curl.html %}

For parameter descriptions, see [Register parameters](#register-parameters).

OpenSearch responds with an agent ID:

```json
{
"agent_id": "az1XEJABXWrLmr4miAFj"
}
```

## Step 3: Run the agent

Then, run the agent by sending the following request:

```json
POST /_plugins/_ml/agents/9X7xWI0Bpc3sThaJdY9i/_execute
{
"parameters": {
"number1": 2,
"number2": 3
}
}
```
{% include copy-curl.html %}

OpenSearch returns the output of the Lambda function execution. In the output, the field name is `response`, and the `result` field contains the Lambda function result:

```json
{
"inference_results": [
{
"output": [
{
"name": "response",
"result": 5
}
]
}
]
}
```

## Register parameters

The following table lists all tool parameters that are available when registering an agent.

Parameter | Type | Required/Optional | Description
:--- | :--- | :--- | :---
`connector_id` | String | Required | A connector ID of a connector configured with an `execute` action that invokes an API.
`response_filter` | String | Optional | A [JSON path](https://github.com/json-path/JsonPath) to the response field that contains the result of invoking the API. If a `response_filter` is not specified, then the `ConnectorTool` expects the API response to be in a field named `response`.

## Execute parameters

When running the agent, you can define any parameter needed for the API call in the `request_body` of your connector's `execute` action. In this example, the parameters are `number1` and `number2`:

```json
"actions": [
{
"action_type": "execute",
"method": "POST",
"url": "YOUR LAMBDA FUNCTION URL",
"headers": {
"content-type": "application/json"
},
"request_body": "{ \"number1\":\"${parameters.number1}\", \"number2\":\"${parameters.number2}\" }"
}
]
```
1 change: 1 addition & 0 deletions _ml-commons-plugin/agents-tools/tools/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ Each tool takes a list of parameters specific to that tool. In the preceding exa
|:--- |:--- |
|[`AgentTool`]({{site.url}}{{site.baseurl}}/ml-commons-plugin/agents-tools/tools/agent-tool/) |Runs any agent. |
|[`CatIndexTool`]({{site.url}}{{site.baseurl}}/ml-commons-plugin/agents-tools/tools/cat-index-tool/) |Retrieves index information for the OpenSearch cluster. |
|[`ConnectorTool`]({{site.url}}{{site.baseurl}}/ml-commons-plugin/agents-tools/tools/connector-tool/) | Uses a [connector]({{site.url}}{{site.baseurl}}/ml-commons-plugin/remote-models/connectors/) to call any REST API function. |
|[`IndexMappingTool`]({{site.url}}{{site.baseurl}}/ml-commons-plugin/agents-tools/tools/index-mapping-tool/) |Retrieves index mapping and setting information for an index. |
|[`MLModelTool`]({{site.url}}{{site.baseurl}}/ml-commons-plugin/agents-tools/tools/ml-model-tool/) |Runs machine learning models. |
|[`NeuralSparseSearchTool`]({{site.url}}{{site.baseurl}}/ml-commons-plugin/agents-tools/tools/neural-sparse-tool/) | Performs sparse vector retrieval. |
Expand Down

0 comments on commit 6cc7072

Please sign in to comment.