Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.07402 #6260

Open
wants to merge 5 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
277 changes: 277 additions & 0 deletions joss.07402/10.21105.joss.07402.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,277 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241217120648-e5142328cbc8b2069abb19b01c299a2506a7a1f5</doi_batch_id>
<timestamp>20241217120648</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>104</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>AdOpT-NET0: A technology-focused Python package for the optimization of multi-energy systems</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Jan F.</given_name>
<surname>Wiegner</surname>
<affiliations>
<institution><institution_name>Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0003-2993-2496</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Julia L.</given_name>
<surname>Tiggeloven</surname>
<affiliations>
<institution><institution_name>Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0006-2574-5887</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Luca</given_name>
<surname>Bertoni</surname>
<affiliations>
<institution><institution_name>Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0006-5330-7104</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Inge M.</given_name>
<surname>Ossentjuk</surname>
<affiliations>
<institution><institution_name>Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0001-8635-9385</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Matteo</given_name>
<surname>Gazzani</surname>
<affiliations>
<institution><institution_name>Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0002-1352-4562</ORCID>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>17</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>7402</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07402</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14361112</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7402</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07402</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07402</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07402.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="gabrielli2018optimal">
<article_title>Optimal design of multi-energy systems with seasonal storage</article_title>
<author>Gabrielli</author>
<journal_title>Applied Energy</journal_title>
<volume>219</volume>
<doi>10.1016/j.apenergy.2017.07.142</doi>
<cYear>2018</cYear>
<unstructured_citation>Gabrielli, P., Gazzani, M., Martelli, E., &amp; Mazzotti, M. (2018). Optimal design of multi-energy systems with seasonal storage. Applied Energy, 219, 408–424. https://doi.org/10.1016/j.apenergy.2017.07.142</unstructured_citation>
</citation>
<citation key="wiegner2022optimal">
<article_title>Optimal design and operation of solid sorbent direct air capture processes at varying ambient conditions</article_title>
<author>Wiegner</author>
<journal_title>Industrial &amp; Engineering Chemistry Research</journal_title>
<issue>34</issue>
<volume>61</volume>
<doi>10.1021/acs.iecr.2c00681</doi>
<cYear>2022</cYear>
<unstructured_citation>Wiegner, J. F., Grimm, A., Weimann, L., &amp; Gazzani, M. (2022). Optimal design and operation of solid sorbent direct air capture processes at varying ambient conditions. Industrial &amp; Engineering Chemistry Research, 61(34), 12649–12667. https://doi.org/10.1021/acs.iecr.2c00681</unstructured_citation>
</citation>
<citation key="wiegner2024integration">
<article_title>Unleashing the full potential of the north sea – identifying key energy infrastructure synergies for 2030 and 2040</article_title>
<author>Wiegner</author>
<doi>10.48550/arXiv.2411.00540</doi>
<unstructured_citation>Wiegner, J. F., Gibescu, M., &amp; Gazzani, M. (forthcoming). Unleashing the full potential of the north sea – identifying key energy infrastructure synergies for 2030 and 2040. Forthcoming. https://doi.org/10.48550/arXiv.2411.00540</unstructured_citation>
</citation>
<citation key="tiggeloven2024chemicalcluster">
<article_title>Optimizing emissions reduction in ammonia-ethylene chemical clusters: Synergistic integration of electrification, carbon capture, and hydrogen</article_title>
<author>Tiggeloven</author>
<unstructured_citation>Tiggeloven, J. L., Faaij, A. P. C., Kramer, G. J., &amp; Gazzani, M. (forthcoming). Optimizing emissions reduction in ammonia-ethylene chemical clusters: Synergistic integration of electrification, carbon capture, and hydrogen. Forthcoming.</unstructured_citation>
</citation>
<citation key="morales2017hidden">
<article_title>Hidden power system inflexibilities imposed by traditional unit commitment formulations</article_title>
<author>Morales-España</author>
<journal_title>Applied Energy</journal_title>
<volume>191</volume>
<doi>10.1016/j.apenergy.2017.01.089</doi>
<cYear>2017</cYear>
<unstructured_citation>Morales-España, G., Ramírez-Elizondo, L., &amp; Hobbs, B. F. (2017). Hidden power system inflexibilities imposed by traditional unit commitment formulations. Applied Energy, 191, 223–238. https://doi.org/10.1016/j.apenergy.2017.01.089</unstructured_citation>
</citation>
<citation key="weimann2022novel">
<article_title>A novel time discretization method for solving complex multi-energy system design and operation problems with high penetration of renewable energy</article_title>
<author>Weimann</author>
<journal_title>Computers &amp; Chemical Engineering</journal_title>
<volume>163</volume>
<doi>10.1016/j.compchemeng.2022.107816</doi>
<cYear>2022</cYear>
<unstructured_citation>Weimann, L., &amp; Gazzani, M. (2022). A novel time discretization method for solving complex multi-energy system design and operation problems with high penetration of renewable energy. Computers &amp; Chemical Engineering, 163, 107816. https://doi.org/10.1016/j.compchemeng.2022.107816</unstructured_citation>
</citation>
<citation key="weimann2019modeling">
<article_title>Modeling gas turbines in multi-energy systems: A linear model accounting for part-load operation, fuel temperature and sizing effects</article_title>
<author>Weimann</author>
<doi>10.46855/energy-proceedings-5280</doi>
<cYear>2019</cYear>
<unstructured_citation>Weimann, L., Ellerker, M., Kramer, G. J., &amp; Gazzani, M. (2019). Modeling gas turbines in multi-energy systems: A linear model accounting for part-load operation, fuel temperature and sizing effects. https://doi.org/10.46855/energy-proceedings-5280</unstructured_citation>
</citation>
<citation key="ruhnau2019time">
<article_title>Time series of heat demand and heat pump efficiency for energy system modeling</article_title>
<author>Ruhnau</author>
<journal_title>Scientific data</journal_title>
<issue>1</issue>
<volume>6</volume>
<doi>10.1038/s41597-019-0199-y</doi>
<cYear>2019</cYear>
<unstructured_citation>Ruhnau, O., Hirth, L., &amp; Praktiknjo, A. (2019). Time series of heat demand and heat pump efficiency for energy system modeling. Scientific Data, 6(1), 1–10. https://doi.org/10.1038/s41597-019-0199-y</unstructured_citation>
</citation>
<citation key="xu2022investigation">
<article_title>Investigation on the efficiency degradation characterization of low ambient temperature air source heat pump under partial load operation</article_title>
<author>Xu</author>
<journal_title>International Journal of Refrigeration</journal_title>
<volume>133</volume>
<doi>10.1016/j.ijrefrig.2021.10.002</doi>
<cYear>2022</cYear>
<unstructured_citation>Xu, Z., Li, H., Xu, W., Shao, S., Wang, Z., Gou, X., Zhao, M., &amp; Li, J. (2022). Investigation on the efficiency degradation characterization of low ambient temperature air source heat pump under partial load operation. International Journal of Refrigeration, 133, 99–110. https://doi.org/10.1016/j.ijrefrig.2021.10.002</unstructured_citation>
</citation>
<citation key="tiggeloven2023optimization">
<article_title>Optimization of electric ethylene production: Exploring the role of cracker flexibility, batteries, and renewable energy integration</article_title>
<author>Tiggeloven</author>
<journal_title>Industrial and Engineering Chemistry Research</journal_title>
<issue>40</issue>
<volume>62</volume>
<doi>10.1021/ACS.IECR.3C02226</doi>
<cYear>2023</cYear>
<unstructured_citation>Tiggeloven, J. L., Faaij, A. P. C., Kramer, G. J., &amp; Gazzani, M. (2023). Optimization of electric ethylene production: Exploring the role of cracker flexibility, batteries, and renewable energy integration. Industrial and Engineering Chemistry Research, 62(40), 16360–16382. https://doi.org/10.1021/ACS.IECR.3C02226</unstructured_citation>
</citation>
<citation key="weimann2023ccsmodel">
<article_title>A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation</article_title>
<author>Weimann</author>
<journal_title>Applied Energy</journal_title>
<volume>336</volume>
<doi>10.1016/j.apenergy.2023.120738</doi>
<issn>0306-2619</issn>
<cYear>2023</cYear>
<unstructured_citation>Weimann, L., Dubbink, G., van der Ham, L., &amp; Gazzani, M. (2023). A thermodynamic-based mixed-integer linear model of post-combustion carbon capture for reliable use in energy system optimisation. Applied Energy, 336, 120738. https://doi.org/10.1016/j.apenergy.2023.120738</unstructured_citation>
</citation>
<citation key="Hoffmann2024review">
<article_title>A review of mixed-integer linear formulations for framework-based energy system models</article_title>
<author>Hoffmann</author>
<journal_title>Advances in Applied Energy</journal_title>
<volume>16</volume>
<doi>10.1016/j.adapen.2024.100190</doi>
<cYear>2024</cYear>
<unstructured_citation>Hoffmann, M., Schyska, B. U., Bartels, J., Pelser, T., Behrens, J., Wetzel, M., Gils, H. C., Tang, C.-F., Tillmanns, M., Stock, J., Xhonneux, A., Kotzur, L., Praktiknjo, A., Vogt, T., Jochem, P., Linßen, J., Weinand, J. M., &amp; Stolten, D. (2024). A review of mixed-integer linear formulations for framework-based energy system models. Advances in Applied Energy, 16, 100190. https://doi.org/10.1016/j.adapen.2024.100190</unstructured_citation>
</citation>
<citation key="mancarella2014mes">
<article_title>MES (multi-energy systems): An overview of concepts and evaluation models</article_title>
<author>Mancarella</author>
<journal_title>Energy</journal_title>
<volume>65</volume>
<doi>10.1016/j.energy.2013.10.041</doi>
<cYear>2014</cYear>
<unstructured_citation>Mancarella, P. (2014). MES (multi-energy systems): An overview of concepts and evaluation models. Energy, 65, 1–17. https://doi.org/10.1016/j.energy.2013.10.041</unstructured_citation>
</citation>
<citation key="Gabrielli2020a">
<article_title>Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage</article_title>
<author>Gabrielli</author>
<journal_title>Renewable and Sustainable Energy Reviews</journal_title>
<volume>121</volume>
<doi>10.1016/j.rser.2019.109629</doi>
<cYear>2020</cYear>
<unstructured_citation>Gabrielli, P., Poluzzi, A., Kramer, G. J., Spiers, C., Mazzotti, M., &amp; Gazzani, M. (2020). Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage. Renewable and Sustainable Energy Reviews, 121. https://doi.org/10.1016/j.rser.2019.109629</unstructured_citation>
</citation>
<citation key="bynum2021pyomo">
<volume_title>Pyomo–optimization modeling in python</volume_title>
<author>Bynum</author>
<volume>67</volume>
<doi>10.1007/978-3-030-68928-5</doi>
<cYear>2021</cYear>
<unstructured_citation>Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola, J. D., Watson, J.-P., &amp; Woodruff, D. L. (2021). Pyomo–optimization modeling in python (Third, Vol. 67). Springer Science &amp; Business Media. https://doi.org/10.1007/978-3-030-68928-5</unstructured_citation>
</citation>
<citation key="Anderson2023pvlib">
<article_title>Pvlib python: 2023 project update</article_title>
<author>Anderson</author>
<journal_title>Journal of Open Source Software</journal_title>
<issue>92</issue>
<volume>8</volume>
<doi>10.21105/joss.05994</doi>
<cYear>2023</cYear>
<unstructured_citation>Anderson, K. S., Hansen, C. W., Holmgren, W. F., Jensen, A. R., Mikofski, M. A., &amp; Driesse, A. (2023). Pvlib python: 2023 project update. Journal of Open Source Software, 8(92), 5994. https://doi.org/10.21105/joss.05994</unstructured_citation>
</citation>
<citation key="Hoffmann2022tsam">
<article_title>The pareto-optimal temporal aggregation of energy system models</article_title>
<author>Hoffmann</author>
<journal_title>Applied Energy</journal_title>
<volume>315</volume>
<doi>10.1016/j.apenergy.2022.119029</doi>
<issn>0306-2619</issn>
<cYear>2022</cYear>
<unstructured_citation>Hoffmann, M., Kotzur, L., &amp; Stolten, D. (2022). The pareto-optimal temporal aggregation of energy system models. Applied Energy, 315, 119029. https://doi.org/10.1016/j.apenergy.2022.119029</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07402/10.21105.joss.07402.pdf
Binary file not shown.
Loading