Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.06220 #5624

Merged
merged 4 commits into from
Jul 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
195 changes: 195 additions & 0 deletions joss.06220/10.21105.joss.06220.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240715180932-466f4c859b3754b8ec00d71722f7d17b5a10d3af</doi_batch_id>
<timestamp>20240715180932</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>07</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>99</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>ddtlcm: An R package for overcoming weak separation in
Bayesian latent class analysis via tree-regularization</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Mengbing</given_name>
<surname>Li</surname>
<ORCID>https://orcid.org/0000-0002-2264-8006</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Bolin</given_name>
<surname>Wu</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Briana</given_name>
<surname>Stephenson</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Zhenke</given_name>
<surname>Wu</surname>
<ORCID>https://orcid.org/0000-0001-7582-669X</ORCID>
</person_name>
</contributors>
<publication_date>
<month>07</month>
<day>15</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6220</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06220</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.12711232</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6220</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06220</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06220</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06220.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="whiteBayesLCAPackageBayesian2014">
<article_title>BayesLCA: An R package for Bayesian latent
class analysis</article_title>
<author>White</author>
<journal_title>Journal of Statistical
Software</journal_title>
<volume>61</volume>
<doi>10.18637/jss.v061.i13</doi>
<issn>1548-7660</issn>
<cYear>2014</cYear>
<unstructured_citation>White, A., &amp; Murphy, T. B.
(2014). BayesLCA: An R package for Bayesian latent class analysis.
Journal of Statistical Software, 61, 1–28.
https://doi.org/10.18637/jss.v061.i13</unstructured_citation>
</citation>
<citation key="linzer2011PoLCAPackage">
<article_title>poLCA: An R package for polytomous variable
latent class analysis</article_title>
<author>Linzer</author>
<journal_title>Journal of Statistical
Software</journal_title>
<volume>42</volume>
<doi>10.18637/jss.v042.i10</doi>
<issn>1548-7660</issn>
<cYear>2011</cYear>
<unstructured_citation>Linzer, D. A., &amp; Lewis, J. B.
(2011). poLCA: An R package for polytomous variable latent class
analysis. Journal of Statistical Software, 42, 1–29.
https://doi.org/10.18637/jss.v042.i10</unstructured_citation>
</citation>
<citation key="beath2017randomlca">
<article_title>randomLCA: An R package for latent class with
random effects analysis</article_title>
<author>Beath</author>
<journal_title>Journal of Statistical
Software</journal_title>
<volume>81</volume>
<doi>10.18637/jss.v081.i13</doi>
<cYear>2017</cYear>
<unstructured_citation>Beath, K. J. (2017). randomLCA: An R
package for latent class with random effects analysis. Journal of
Statistical Software, 81, 1–25.
https://doi.org/10.18637/jss.v081.i13</unstructured_citation>
</citation>
<citation key="li2023tree">
<article_title>Tree-regularized Bayesian latent class
analysis for improving weakly separated dietary pattern subtyping in
small-sized subpopulations</article_title>
<author>Li</author>
<journal_title>arXiv preprint
arXiv:2306.04700</journal_title>
<cYear>2023</cYear>
<unstructured_citation>Li, M., Stephenson, B., &amp; Wu, Z.
(2023). Tree-regularized Bayesian latent class analysis for improving
weakly separated dietary pattern subtyping in small-sized
subpopulations. arXiv Preprint arXiv:2306.04700.</unstructured_citation>
</citation>
<citation key="neal2003density">
<article_title>Density Modeling and Clustering Using
Dirichlet Diffusion Trees</article_title>
<author>Neal</author>
<journal_title>Bayesian Statistics 7: Proceedings of the
Seventh Valencia International Meeting</journal_title>
<doi>10.1093/oso/9780198526155.003.0042</doi>
<isbn>9780198526155</isbn>
<cYear>2003</cYear>
<unstructured_citation>Neal, R. M. (2003). Density Modeling
and Clustering Using Dirichlet Diffusion Trees. In Bayesian Statistics
7: Proceedings of the Seventh Valencia International Meeting. Oxford
University Press.
https://doi.org/10.1093/oso/9780198526155.003.0042</unstructured_citation>
</citation>
<citation key="papastamoulis2014HandlingLabel">
<article_title>Handling the label switching problem in
latent class models via the ECR algorithm</article_title>
<author>Papastamoulis</author>
<journal_title>Communications in Statistics - Simulation and
Computation</journal_title>
<issue>4</issue>
<volume>43</volume>
<doi>10.1080/03610918.2012.718840</doi>
<issn>0361-0918</issn>
<cYear>2014</cYear>
<unstructured_citation>Papastamoulis, P. (2014). Handling
the label switching problem in latent class models via the ECR
algorithm. Communications in Statistics - Simulation and Computation,
43(4), 913–927.
https://doi.org/10.1080/03610918.2012.718840</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06220/10.21105.joss.06220.pdf
Binary file not shown.
Loading