Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.02974 #3630

Merged
merged 3 commits into from
Oct 17, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
267 changes: 267 additions & 0 deletions joss.02974/10.21105.joss.02974.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,267 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20221017T122855-06553bbbbac60ea20dbdb686edf13b22cda062f2</doi_batch_id>
<timestamp>20221017122855</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org/</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2022</year>
</publication_date>
<journal_volume>
<volume>7</volume>
</journal_volume>
<issue>78</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Moead-framework: a modular MOEA/D Python
framework</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Geoffrey</given_name>
<surname>Pruvost</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Bilel</given_name>
<surname>Derbel</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Arnaud</given_name>
<surname>Liefooghe</surname>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>17</day>
<year>2022</year>
</publication_date>
<pages>
<first_page>2974</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.02974</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.7152178</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/2974</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.02974</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.02974</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.02974.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="moead_de">
<article_title>MOEA/D-DE : Multiobjective Optimization
Problems With Complicated Pareto Sets, MOEA/D and
NSGA-II</article_title>
<author>Li</author>
<journal_title>IEEE Transactions on Evolutionary
Computation</journal_title>
<issue>2</issue>
<volume>13</volume>
<doi>10.1109/TEVC.2008.925798</doi>
<cYear>2009</cYear>
<unstructured_citation>Li, H., &amp; Zhang, Q. (2009).
MOEA/D-DE : Multiobjective Optimization Problems With Complicated Pareto
Sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computation,
13(2), 284–302.
https://doi.org/10.1109/TEVC.2008.925798</unstructured_citation>
</citation>
<citation key="moead">
<article_title>MOEA/d: A multiobjective evolutionary
algorithm based on decomposition</article_title>
<author>Zhang</author>
<journal_title>IEEE Transactions on Evolutionary
Computation</journal_title>
<issue>6</issue>
<volume>11</volume>
<doi>10.1109/TEVC.2007.892759</doi>
<cYear>2007</cYear>
<unstructured_citation>Zhang, Q., &amp; Li, H. (2007).
MOEA/d: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation, 11(6), 712–731.
https://doi.org/10.1109/TEVC.2007.892759</unstructured_citation>
</citation>
<citation key="moead_dra">
<article_title>The performance of a new version of MOEA/d on
CEC09 unconstrained MOP test instances</article_title>
<author>Zhang</author>
<journal_title>2009 IEEE congress on evolutionary
computation</journal_title>
<doi>10.1109/CEC.2009.4982949</doi>
<cYear>2009</cYear>
<unstructured_citation>Zhang, Q., Liu, W., &amp; Li, H.
(2009). The performance of a new version of MOEA/d on CEC09
unconstrained MOP test instances. 2009 IEEE Congress on Evolutionary
Computation, 203–208.
https://doi.org/10.1109/CEC.2009.4982949</unstructured_citation>
</citation>
<citation key="gpruvost_gecco2020">
<article_title>Surrogate-assisted multi-objective
combinatorial optimization based on decomposition and walsh
basis</article_title>
<author>Pruvost</author>
<journal_title>Proceedings of the 2020 genetic and
evolutionary computation conference</journal_title>
<doi>10.1145/3377930.3390149</doi>
<isbn>9781450371285</isbn>
<cYear>2020</cYear>
<unstructured_citation>Pruvost, G., Derbel, B., Liefooghe,
A., Verel, S., &amp; Zhang, Q. (2020). Surrogate-assisted
multi-objective combinatorial optimization based on decomposition and
walsh basis. Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, 542–550.
https://doi.org/10.1145/3377930.3390149</unstructured_citation>
</citation>
<citation key="gpruvost_evocop2020">
<article_title>On the combined impact of population size and
sub-problem selection in MOEA/d</article_title>
<author>Pruvost</author>
<journal_title>Evolutionary computation in combinatorial
optimization</journal_title>
<doi>10.1007/978-3-030-43680-3_9</doi>
<isbn>978-3-030-43680-3</isbn>
<cYear>2020</cYear>
<unstructured_citation>Pruvost, G., Derbel, B., Liefooghe,
A., Li, K., &amp; Zhang, Q. (2020). On the combined impact of population
size and sub-problem selection in MOEA/d. In L. Paquete &amp; C. Zarges
(Eds.), Evolutionary computation in combinatorial optimization (pp.
131–147). Springer International Publishing.
https://doi.org/10.1007/978-3-030-43680-3_9</unstructured_citation>
</citation>
<citation key="Campelo_2020">
<article_title>The MOEADr package: A component-based
framework for multiobjective evolutionary algorithms based on
decomposition</article_title>
<author>Campelo</author>
<journal_title>Journal of Statistical
Software</journal_title>
<issue>6</issue>
<volume>92</volume>
<doi>10.18637/jss.v092.i06</doi>
<issn>1548-7660</issn>
<cYear>2020</cYear>
<unstructured_citation>Campelo, F., Batista, L. S., &amp;
Aranha, C. (2020). The MOEADr package: A component-based framework for
multiobjective evolutionary algorithms based on decomposition. Journal
of Statistical Software, 92(6).
https://doi.org/10.18637/jss.v092.i06</unstructured_citation>
</citation>
<citation key="pymoo">
<article_title>Pymoo: Multi-objective optimization in
python</article_title>
<author>Blank</author>
<journal_title>IEEE Access</journal_title>
<volume>8</volume>
<doi>10.1109/ACCESS.2020.2990567</doi>
<cYear>2020</cYear>
<unstructured_citation>Blank, J., &amp; Deb, K. (2020).
Pymoo: Multi-objective optimization in python. IEEE Access, 8,
89497–89509.
https://doi.org/10.1109/ACCESS.2020.2990567</unstructured_citation>
</citation>
<citation key="pygmo">
<article_title>A parallel global multiobjective framework
for optimization: pagmo</article_title>
<author>Biscani</author>
<journal_title>Journal of Open Source
Software</journal_title>
<issue>53</issue>
<volume>5</volume>
<doi>10.21105/joss.02338</doi>
<cYear>2020</cYear>
<unstructured_citation>Biscani, F., &amp; Izzo, D. (2020). A
parallel global multiobjective framework for optimization: pagmo.
Journal of Open Source Software, 5(53), 2338.
https://doi.org/10.21105/joss.02338</unstructured_citation>
</citation>
<citation key="jmetal">
<article_title>Redesigning the JMetal multi-objective
optimization framework</article_title>
<author>Nebro</author>
<journal_title>Proceedings of the companion publication of
the 2015 annual conference on genetic and evolutionary
computation</journal_title>
<doi>10.1145/2739482.2768462</doi>
<isbn>9781450334884</isbn>
<cYear>2015</cYear>
<unstructured_citation>Nebro, A. J., Durillo, J. J., &amp;
Vergne, M. (2015). Redesigning the JMetal multi-objective optimization
framework. Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation, 1093–1100.
https://doi.org/10.1145/2739482.2768462</unstructured_citation>
</citation>
<citation key="vanrijn2016">
<article_title>Evolving the structure of evolution
strategies</article_title>
<author>van Rijn</author>
<journal_title>2016 IEEE symposium series on computational
intelligence (SSCI)</journal_title>
<doi>10.1109/SSCI.2016.7850138</doi>
<cYear>2016</cYear>
<unstructured_citation>van Rijn, S., Wang, H., van Leeuwen,
M., &amp; Bäck, T. (2016). Evolving the structure of evolution
strategies. 2016 IEEE Symposium Series on Computational Intelligence
(SSCI).
https://doi.org/10.1109/SSCI.2016.7850138</unstructured_citation>
</citation>
<citation key="DEAP_JMLR2012">
<article_title>DEAP: Evolutionary algorithms made
easy</article_title>
<author>Fortin</author>
<journal_title>Journal of Machine Learning
Research</journal_title>
<volume>13</volume>
<cYear>2012</cYear>
<unstructured_citation>Fortin, F.-A., De Rainville, F.-M.,
Gardner, M.-A., Parizeau, M., &amp; Gagné, C. (2012). DEAP: Evolutionary
algorithms made easy. Journal of Machine Learning Research, 13,
2171–2175.</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading