Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Creating pull request for 10.21105.joss.03979 #2865

Merged
merged 2 commits into from
Jan 5, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
181 changes: 181 additions & 0 deletions joss.03979/10.21105.joss.03979.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/4.4.0" xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" xmlns:rel="http://www.crossref.org/relations.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.4.0" xsi:schemaLocation="http://www.crossref.org/schema/4.4.0 http://www.crossref.org/schemas/crossref4.4.0.xsd">
<head>
<doi_batch_id>ff5fb6df505239ae879ed0e02dc9cd89</doi_batch_id>
<timestamp>20220105200724</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>01</month>
<year>2022</year>
</publication_date>
<journal_volume>
<volume>7</volume>
</journal_volume>
<issue>69</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>medoutcon: Nonparametric efficient causal mediation analysis with machine learning in R</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Nima</given_name>
<surname>Hejazi</surname>
<ORCID>http://orcid.org/0000-0002-7127-2789</ORCID>
</person_name>
<person_name sequence="additional" contributor_role="author">
<given_name>Kara</given_name>
<surname>Rudolph</surname>
<ORCID>http://orcid.org/0000-0002-9417-7960</ORCID>
</person_name>
<person_name sequence="additional" contributor_role="author">
<given_name>Iván</given_name>
<surname>Díaz</surname>
<ORCID>http://orcid.org/0000-0001-9056-2047</ORCID>
</person_name>
</contributors>
<publication_date>
<month>01</month>
<day>05</day>
<year>2022</year>
</publication_date>
<pages>
<first_page>3979</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.03979</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">“https://doi.org/10.5281/zenodo.5809520”</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/3979</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.03979</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.03979</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.03979.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="ref1">
<unstructured_citation>Nonparametric causal mediation analysis for stochastic interventional (in)direct effects, Hejazi, Nima S and Rudolph, Kara E and van der Laan, Mark J and Dı́az, Iván, 2022, https://arxiv.org/abs/2009.06203, , invited at Biostatistics, , , , </unstructured_citation>
</citation>
<citation key="ref2">
<doi>10.1093/biomet/asaa085</doi>
</citation>
<citation key="ref3">
<doi>10.1097/ede.0000000000000034</doi>
</citation>
<citation key="ref4">
<doi>10.1515/em-2017-0007</doi>
</citation>
<citation key="ref5">
<unstructured_citation>Super learner, van der Laan, Mark J and Polley, Eric C and Hubbard, Alan E, Statistical Applications in Genetics and Molecular Biology, 6, 1, 2007, De Gruyter</unstructured_citation>
</citation>
<citation key="ref6">
<doi>10.5281/zenodo.1342293</doi>
</citation>
<citation key="ref7">
<doi>10.1007/978-1-4419-9782-1_27</doi>
</citation>
<citation key="ref8">
<doi>10.1257/aer.p20171038</doi>
</citation>
<citation key="ref9">
<doi>10.1515/jci-2020-0018</doi>
</citation>
<citation key="ref10">
<doi>10.1097/00001648-199203000-00013</doi>
</citation>
<citation key="ref11">
<unstructured_citation>Direct and indirect effects, Pearl, Judea, arXiv preprint arXiv:1301.2300, 2001</unstructured_citation>
</citation>
<citation key="ref12">
<doi>10.1214/12-AOS990</doi>
</citation>
<citation key="ref13">
<doi>10.2202/1557-4679.1361</doi>
</citation>
<citation key="ref14">
<unstructured_citation>Direct and indirect effects of sequential treatments, Didelez, Vanessa and Dawid, Philip and Geneletti, Sara, Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence, 138–146, 2006</unstructured_citation>
</citation>
<citation key="ref15">
<unstructured_citation>Efficient and Adaptive Estimation for Semiparametric Models, Bickel, Peter J and Klaassen, Chris AJ and Ritov, YA’Acov and Wellner, Jon A, 1993, Johns Hopkins University Press</unstructured_citation>
</citation>
<citation key="ref16">
<unstructured_citation>Vienna, Austria, R Core Team, R Foundation for Statistical Computing, R: A Language and Environment for Statistical Computing, https://R-project.org/, 2022</unstructured_citation>
</citation>
<citation key="ref17">
<doi>10.21105/joss.00512</doi>
</citation>
<citation key="ref18">
<doi>10.5281/zenodo.835602</doi>
</citation>
<citation key="ref19">
<doi>10.1007/978-3-319-59626-6_5</doi>
</citation>
<citation key="ref20">
<unstructured_citation>Correlation and causation, Wright, Sewall, Journal of Agricultural Research, 20, 7, 557–585, 1921, Washington</unstructured_citation>
</citation>
<citation key="ref21">
<doi>10.1111/biom.13375</doi>
</citation>
<citation key="ref22">
<unstructured_citation>Inference for natural mediation effects under case-cohort sampling with applications in identifying COVID-19 vaccine correlates of protection, Benkeser, David and Díaz, Iván and Ran, Jialu, arXiv preprint arXiv:2103.02643, https://arxiv.org/abs/2103.02643, 2021</unstructured_citation>
</citation>
<citation key="ref23">
<doi>10.1111/add.15377</doi>
</citation>
<citation key="ref24">
<unstructured_citation>, https://tlverse.org/tlverse-handbook, 2022, CRC Press, van der Laan, Mark J and Coyle, Jeremy R and Hejazi, Nima S and Malenica, Ivana and Phillips, Rachael V and Hubbard, Alan E, Targeted Learning in : Causal Data Science with the Software Ecosystem</unstructured_citation>
</citation>
<citation key="ref25">
<unstructured_citation>Helped into Harm: Mediation of a Housing Voucher Intervention on Mental Health and Substance Use in Boys, Rudolph, Kara E and Gimbrone, Catherine and Dı́az, Iván, Epidemiology, 32, 3, 336–346, 2021, LWW</unstructured_citation>
</citation>
<citation key="ref26">
<unstructured_citation>Causality: Models, Reasoning, and Inference, Pearl, Judea, 2009, Cambridge University Press</unstructured_citation>
</citation>
<citation key="ref27">
<doi>10.1097/01.ede.0000208475.99429.2d</doi>
</citation>
<citation key="ref28">
<unstructured_citation>Hernán, Miguel A and Robins, James M, CRC Press, Causal Inference: What If, 2022</unstructured_citation>
</citation>
<citation key="ref29">
<unstructured_citation>Imbens, Guido W and Rubin, Donald B, Cambridge University Press, Causal Inference in Statistics, Social, and Biomedical Sciences, 2015</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.03979/10.21105.joss.03979.pdf
Binary file not shown.