Skip to content

Commit

Permalink
Merge pull request #4732 from openjournals/joss.04249
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Oct 27, 2023
2 parents 28cbafc + 428f145 commit f93892c
Show file tree
Hide file tree
Showing 4 changed files with 1,122 additions and 0 deletions.
398 changes: 398 additions & 0 deletions joss.04249/10.21105.joss.04249.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,398 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231027T152954-b71dbd3ba811ca57925ec8ba90ce0ab3da3f7053</doi_batch_id>
<timestamp>20231027152954</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>90</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>UncertainSCI: A Python Package for Noninvasive
Parametric Uncertainty Quantification of Simulation Pipelines</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Jess</given_name>
<surname>Tate</surname>
<ORCID>https://orcid.org/0000-0002-2934-1453</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Zexin</given_name>
<surname>Liu</surname>
<ORCID>https://orcid.org/0000-0003-3409-5709</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Jake A</given_name>
<surname>Bergquist</surname>
<ORCID>https://orcid.org/0000-0002-4586-6911</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Sumientra</given_name>
<surname>Rampersad</surname>
<ORCID>https://orcid.org/0000-0001-9860-4459</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Dan</given_name>
<surname>White</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Chantel</given_name>
<surname>Charlebois</surname>
<ORCID>https://orcid.org/0000-0002-4139-3539</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Lindsay</given_name>
<surname>Rupp</surname>
<ORCID>https://orcid.org/0000-0002-2688-7688</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Dana H</given_name>
<surname>Brooks</surname>
<ORCID>https://orcid.org/0000-0003-3231-6715</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Rob S</given_name>
<surname>MacLeod</surname>
<ORCID>https://orcid.org/0000-0002-0000-0356</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Akil</given_name>
<surname>Narayan</surname>
<ORCID>https://orcid.org/0000-0002-5914-4207</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>27</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>4249</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.04249</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.8226383</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/4249</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.04249</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.04249</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.04249.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="USCI">
<article_title>UncertainSCI</article_title>
<cYear>2020</cYear>
<unstructured_citation>UncertainSCI. (2020).
https://www.sci.utah.edu/cibc-software/uncertainsci.html</unstructured_citation>
</citation>
<citation key="JDT:Bur2020">
<article_title>Efficient sampling for polynomial chaos-based
uncertainty quantification and sensitivity analysis using weighted
approximate fekete points</article_title>
<author>Burk</author>
<journal_title>International Journal for Numerical Methods
in Biomedical Engineering</journal_title>
<issue>11</issue>
<volume>36</volume>
<doi>10.1002/cnm.3395</doi>
<cYear>2020</cYear>
<unstructured_citation>Burk, K. M., Narayan, A., &amp; Orr,
J. A. (2020). Efficient sampling for polynomial chaos-based uncertainty
quantification and sensitivity analysis using weighted approximate
fekete points. International Journal for Numerical Methods in Biomedical
Engineering, 36(11), e3395.
https://doi.org/10.1002/cnm.3395</unstructured_citation>
</citation>
<citation key="RSM:Swe2011">
<article_title>Cardiac position sensitivity study in the
electrocardiographic forward problem using stochastic collocation and
BEM</article_title>
<author>Swenson</author>
<journal_title>Annals of Biomedical
Engineering</journal_title>
<issue>12</issue>
<volume>30</volume>
<doi>10.1007/s10439-011-0391-5</doi>
<cYear>2011</cYear>
<unstructured_citation>Swenson, D. J., Geneser, S. E.,
Stinstra, J. G., Kirby, R. M., &amp; MacLeod, R. S. (2011). Cardiac
position sensitivity study in the electrocardiographic forward problem
using stochastic collocation and BEM. Annals of Biomedical Engineering,
30(12), 2900–2910.
https://doi.org/10.1007/s10439-011-0391-5</unstructured_citation>
</citation>
<citation key="RSM:Gen2005b">
<article_title>The influence of stochastic organ
conductivity in 2D ECG forward modeling: A stochastic finite element
study</article_title>
<author>Geneser</author>
<journal_title>Proceedings of the IEEE engineering in
medicine and biology society 27th annual international
conference</journal_title>
<doi>10.1109/iembs.2005.1615736</doi>
<cYear>2005</cYear>
<unstructured_citation>Geneser, S. E., Choe, S., Kirby, R.
M., &amp; Macleod, R. S. (2005). The influence of stochastic organ
conductivity in 2D ECG forward modeling: A stochastic finite element
study. Proceedings of the IEEE Engineering in Medicine and Biology
Society 27th Annual International Conference, 5528–5531.
https://doi.org/10.1109/iembs.2005.1615736</unstructured_citation>
</citation>
<citation key="JDT:Tat2021a">
<article_title>Uncertainty quantification of the effects of
segmentation variability in ECGI</article_title>
<author>Tate</author>
<journal_title>Functional imaging and modeling of the
heart</journal_title>
<doi>10.1007/978-3-030-78710-3_49</doi>
<cYear>2019</cYear>
<unstructured_citation>Tate, J. D., Good, W. W., Zemzemi,
N., Boonstra, M., Dam, P. van, Brooks, D. H., Narayan, A., &amp;
MacLeod, R. S. (2019). Uncertainty quantification of the effects of
segmentation variability in ECGI. In Functional imaging and modeling of
the heart (pp. 515–522). Springer-Cham.
https://doi.org/10.1007/978-3-030-78710-3_49</unstructured_citation>
</citation>
<citation key="JDT:Ram2021">
<article_title>Quantification of uncertainty due to tissue
conductivity variability in simulations of brain
stimulation</article_title>
<author>Rampersad</author>
<journal_title>10th international IEEE EMBS conference on
neural engineering</journal_title>
<cYear>2021</cYear>
<unstructured_citation>Rampersad, S., Charlebois, C., Tate,
J. D., MacLeod, R. S., Brooks, D. H., &amp; Narayan, A. (2021, May).
Quantification of uncertainty due to tissue conductivity variability in
simulations of brain stimulation. 10th International IEEE EMBS
Conference on Neural Engineering.</unstructured_citation>
</citation>
<citation key="JAB:Rup2020">
<article_title>Using UncertainSCI to quantify uncertainty in
cardiac simulations</article_title>
<author>Rupp</author>
<journal_title>2020 computing in cardiology</journal_title>
<doi>10.22489/CinC.2020.275</doi>
<cYear>2020</cYear>
<unstructured_citation>Rupp, L. C., Liu, Z., Bergquist, J.
A., Rampersad, S., White, D., Tate, J. D., Brooks, D. H., Narayan, A.,
&amp; MacLeod, R. S. (2020). Using UncertainSCI to quantify uncertainty
in cardiac simulations. 2020 Computing in Cardiology, 1–4.
https://doi.org/10.22489/CinC.2020.275</unstructured_citation>
</citation>
<citation key="JDT:Rup2021">
<article_title>The role of myocardial fiber direction in
epicardial activation patterns via uncertainty
quantification</article_title>
<author>Rupp</author>
<journal_title>Computing in cardiology</journal_title>
<volume>48</volume>
<doi>10.23919/cinc53138.2021.9662950</doi>
<cYear>2021</cYear>
<unstructured_citation>Rupp, L. C., Bergquist, J. A.,
Zenger, B., Gillette, K., Narayan, A., Tate, J. D., Plank, G., &amp;
MacLeod, R. S. (2021). The role of myocardial fiber direction in
epicardial activation patterns via uncertainty quantification. Computing
in Cardiology, 48.
https://doi.org/10.23919/cinc53138.2021.9662950</unstructured_citation>
</citation>
<citation key="JDT:Ber2021">
<article_title>Uncertainty quantification in simulations of
myocardial ischemia</article_title>
<author>Bergquist</author>
<journal_title>Computing in cardiology</journal_title>
<volume>48</volume>
<doi>10.23919/cinc53138.2021.9662837</doi>
<cYear>2021</cYear>
<unstructured_citation>Bergquist, J. A., Zenger, B., Rupp,
L. C., Narayan, A., Tate, J. D., &amp; MacLeod, R. S. (2021).
Uncertainty quantification in simulations of myocardial ischemia.
Computing in Cardiology, 48.
https://doi.org/10.23919/cinc53138.2021.9662837</unstructured_citation>
</citation>
<citation key="JDT:Rah2016">
<article_title>Examining the impact of prior models in
transmural electrophysiological imaging: A hierarchical multiple-model
bayesian approach</article_title>
<author>Rahimi</author>
<journal_title>IEEE Trans. Med. Imag.</journal_title>
<issue>1</issue>
<volume>35</volume>
<doi>10.1109/TMI.2015.2464315</doi>
<issn>0278-0062</issn>
<cYear>2016</cYear>
<unstructured_citation>Rahimi, A., Sapp, J., Xu, J.,
Bajorski, P., Horáček, M., &amp; Wang, L. (2016). Examining the impact
of prior models in transmural electrophysiological imaging: A
hierarchical multiple-model bayesian approach. IEEE Trans. Med. Imag.,
35(1), 229–243.
https://doi.org/10.1109/TMI.2015.2464315</unstructured_citation>
</citation>
<citation key="JDT:Tat2021c">
<article_title>Uncertainty quantification in brain
stimulation using UncertainSCI</article_title>
<author>Tate</author>
<journal_title>Brain Stimulation: Basic, Translational, and
Clinical Research in Neuromodulation</journal_title>
<issue>6</issue>
<volume>14</volume>
<doi>10.1016/j.brs.2021.10.226</doi>
<cYear>2021</cYear>
<unstructured_citation>Tate, J. D., Rampersad, S.,
Charlebois, C., Liu, Z., Bergquist, J. A., White, D., Rupp, L. C.,
Brooks, D. H., Narayan, A., &amp; MacLeod, R. S. (2021). Uncertainty
quantification in brain stimulation using UncertainSCI. Brain
Stimulation: Basic, Translational, and Clinical Research in
Neuromodulation, 14(6), 1659–1660.
https://doi.org/10.1016/j.brs.2021.10.226</unstructured_citation>
</citation>
<citation key="JDT:Xu2014">
<article_title>Variational bayesian electrophysiological
imaging of myocardial infarction.</article_title>
<author>Xu</author>
<journal_title>Med Image Comput Comput Assist
Interv</journal_title>
<issue>Pt 2</issue>
<volume>17</volume>
<doi>10.1007/978-3-319-10470-6_66</doi>
<cYear>2014</cYear>
<unstructured_citation>Xu, J., Sapp, J. L., Dehaghani, A.
R., Gao, F., &amp; Wang, L. (2014). Variational bayesian
electrophysiological imaging of myocardial infarction. Med Image Comput
Comput Assist Interv, 17(Pt 2), 529–537.
https://doi.org/10.1007/978-3-319-10470-6_66</unstructured_citation>
</citation>
<citation key="ACN:Xiu2010">
<volume_title>Numerical Methods for Stochastic Computations:
A Spectral Method Approach</volume_title>
<author>Xiu</author>
<doi>10.1007/978-3-319-10470-6_66</doi>
<isbn>0-691-14212-2</isbn>
<cYear>2010</cYear>
<unstructured_citation>Xiu, D. (2010). Numerical Methods for
Stochastic Computations: A Spectral Method Approach. Princeton
University Press.
https://doi.org/10.1007/978-3-319-10470-6_66</unstructured_citation>
</citation>
<citation key="ACN:Ras2004">
<article_title>Gaussian Processes in Machine
Learning</article_title>
<author>Rasmussen</author>
<journal_title>Advanced Lectures on Machine
Learning</journal_title>
<doi>10.1007/978-3-540-28650-9_4</doi>
<isbn>978-3-540-28650-9</isbn>
<cYear>2004</cYear>
<unstructured_citation>Rasmussen, C. E. (2004). Gaussian
Processes in Machine Learning. In Advanced Lectures on Machine Learning
(pp. 63–71). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-28650-9_4</unstructured_citation>
</citation>
<citation key="ACN:Guo2018">
<article_title>Weighted Approximate Fekete Points: Sampling
for Least-Squares Polynomial Approximation</article_title>
<author>Guo</author>
<journal_title>SIAM Journal on Scientific
Computing</journal_title>
<issue>1</issue>
<volume>40</volume>
<doi>10.1137/17M1140960</doi>
<issn>1064-8275</issn>
<cYear>2018</cYear>
<unstructured_citation>Guo, L., Narayan, A., Yan, L., &amp;
Zhou, T. (2018). Weighted Approximate Fekete Points: Sampling for
Least-Squares Polynomial Approximation. SIAM Journal on Scientific
Computing, 40(1), A366–A387.
https://doi.org/10.1137/17M1140960</unstructured_citation>
</citation>
<citation key="ACN:Coh2017">
<article_title>Optimal weighted least-squares
methods</article_title>
<author>Cohen</author>
<journal_title>SMAI Journal of Computational
Mathematics</journal_title>
<volume>3</volume>
<doi>10.5802/smai-jcm.24</doi>
<issn>2426-8399</issn>
<cYear>2017</cYear>
<unstructured_citation>Cohen, A., &amp; Migliorati, G.
(2017). Optimal weighted least-squares methods. SMAI Journal of
Computational Mathematics, 3, 181–203.
https://doi.org/10.5802/smai-jcm.24</unstructured_citation>
</citation>
<citation key="ACN:Nar2018">
<article_title>Computation of induced orthogonal polynomial
distributions</article_title>
<author>Narayan</author>
<journal_title>Electronic Transactions on Numerical
Analysis</journal_title>
<volume>50</volume>
<doi>10.1553/etna_vol50s71</doi>
<cYear>2018</cYear>
<unstructured_citation>Narayan, A. (2018). Computation of
induced orthogonal polynomial distributions. Electronic Transactions on
Numerical Analysis, 50, 71–97.
https://doi.org/10.1553/etna_vol50s71</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit f93892c

Please sign in to comment.