Skip to content

Commit

Permalink
Merge pull request #5593 from openjournals/joss.06720
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Jul 9, 2024
2 parents 187f5a6 + e3ab891 commit 87bcdbc
Show file tree
Hide file tree
Showing 3 changed files with 1,169 additions and 0 deletions.
375 changes: 375 additions & 0 deletions joss.06720/10.21105.joss.06720.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,375 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240709121806-107ef0b15723259678922d8731c06d6b50ead73b</doi_batch_id>
<timestamp>20240709121806</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>07</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>99</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Catalyst: a Python JIT compiler for auto-differentiable
hybrid quantum programs</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>David</given_name>
<surname>Ittah</surname>
<ORCID>https://orcid.org/0000-0003-0975-6448</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Ali</given_name>
<surname>Asadi</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Erick Ochoa</given_name>
<surname>Lopez</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Sergei</given_name>
<surname>Mironov</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Samuel</given_name>
<surname>Banning</surname>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Romain</given_name>
<surname>Moyard</surname>
<ORCID>https://orcid.org/0000-0003-0837-6451</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Mai Jacob</given_name>
<surname>Peng</surname>
<ORCID>https://orcid.org/0000-0002-2377-264X</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Josh</given_name>
<surname>Izaac</surname>
<ORCID>https://orcid.org/0000-0003-2640-0734</ORCID>
</person_name>
</contributors>
<publication_date>
<month>07</month>
<day>09</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6720</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06720</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.12696447</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6720</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06720</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06720</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06720.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="ibmq">
<article_title>IBM Quantum Experience</article_title>
<author>IBM Corporation</author>
<cYear>2016</cYear>
<unstructured_citation>IBM Corporation. (2016). IBM Quantum
Experience.
https://quantumexperience.ng.bluemix.net/</unstructured_citation>
</citation>
<citation key="qiskit">
<article_title>Qiskit</article_title>
<author>IBM Corporation</author>
<cYear>2016</cYear>
<unstructured_citation>IBM Corporation. (2016). Qiskit.
https://qiskit.org/</unstructured_citation>
</citation>
<citation key="cirq">
<article_title>Cirq</article_title>
<author>Google Inc.</author>
<cYear>2018</cYear>
<unstructured_citation>Google Inc. (2018). Cirq.
https://cirq.readthedocs.io/en/latest/</unstructured_citation>
</citation>
<citation key="braket">
<article_title>Amazon Braket</article_title>
<author>Amazon Web Services</author>
<cYear>2020</cYear>
<unstructured_citation>Amazon Web Services. (2020). Amazon
Braket. https://aws.amazon.com/braket/</unstructured_citation>
</citation>
<citation key="pennylane">
<article_title>Pennylane: Automatic differentiation of
hybrid quantum-classical computations</article_title>
<author>Bergholm</author>
<journal_title>arXiv preprint
arXiv:1811.04968</journal_title>
<doi>10.48550/arXiv.1811.04968</doi>
<cYear>2018</cYear>
<unstructured_citation>Bergholm, V., Izaac, J., Schuld, M.,
Gogolin, C., Ahmed, S., Ajith, V., Alam, M. S., Alonso-Linaje, G.,
AkashNarayanan, B., Asadi, A., &amp; others. (2018). Pennylane:
Automatic differentiation of hybrid quantum-classical computations.
arXiv Preprint arXiv:1811.04968.
https://doi.org/10.48550/arXiv.1811.04968</unstructured_citation>
</citation>
<citation key="cuquantum">
<article_title>NVIDIA/cuQuantum: cuQuantum
v22.03.0</article_title>
<author>NVIDIA cuQuantum team</author>
<doi>10.5281/zenodo.6385575</doi>
<cYear>2022</cYear>
<unstructured_citation>NVIDIA cuQuantum team. (2022).
NVIDIA/cuQuantum: cuQuantum v22.03.0 (Version v22.03.0). Zenodo.
https://doi.org/10.5281/zenodo.6385575</unstructured_citation>
</citation>
<citation key="mcclean2016theory">
<article_title>The theory of variational hybrid
quantum-classical algorithms</article_title>
<author>McClean</author>
<journal_title>New Journal of Physics</journal_title>
<issue>2</issue>
<volume>18</volume>
<doi>10.1088/1367-2630/18/2/023023</doi>
<cYear>2016</cYear>
<unstructured_citation>McClean, J. R., Romero, J., Babbush,
R., &amp; Aspuru-Guzik, A. (2016). The theory of variational hybrid
quantum-classical algorithms. New Journal of Physics, 18(2), 023023.
https://doi.org/10.1088/1367-2630/18/2/023023</unstructured_citation>
</citation>
<citation key="farhi2014quantum">
<article_title>A quantum approximate optimization
algorithm</article_title>
<author>Farhi</author>
<journal_title>arXiv preprint
arXiv:1411.4028</journal_title>
<doi>10.48550/arXiv.1411.4028</doi>
<cYear>2014</cYear>
<unstructured_citation>Farhi, E., Goldstone, J., &amp;
Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv
Preprint arXiv:1411.4028.
https://doi.org/10.48550/arXiv.1411.4028</unstructured_citation>
</citation>
<citation key="delgado2021variational">
<article_title>Variational quantum algorithm for molecular
geometry optimization</article_title>
<author>Delgado</author>
<journal_title>Physical Review A</journal_title>
<issue>5</issue>
<volume>104</volume>
<doi>10.1103/physreva.104.052402</doi>
<cYear>2021</cYear>
<unstructured_citation>Delgado, A., Arrazola, J. M.,
Jahangiri, S., Niu, Z., Izaac, J., Roberts, C., &amp; Killoran, N.
(2021). Variational quantum algorithm for molecular geometry
optimization. Physical Review A, 104(5), 052402.
https://doi.org/10.1103/physreva.104.052402</unstructured_citation>
</citation>
<citation key="jax">
<article_title>JAX: Composable transformations of
Python+NumPy programs</article_title>
<author>Bradbury</author>
<cYear>2018</cYear>
<unstructured_citation>Bradbury, J., Frostig, R., Hawkins,
P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
VanderPlas, J., Wanderman-Milne, S., &amp; Zhang, Q. (2018). JAX:
Composable transformations of Python+NumPy programs (Version 0.3.13).
http://github.com/google/jax</unstructured_citation>
</citation>
<citation key="lightning">
<article_title>PennyLane Lightning: Fast state-vector
simulators written in C++</article_title>
<cYear>2023</cYear>
<unstructured_citation>PennyLane Lightning: Fast
state-vector simulators written in C++ (Version 0.33.1). (2023).
http://github.com/pennylane/pennylane-lightning</unstructured_citation>
</citation>
<citation key="llvm">
<article_title>LLVM: A compilation framework for lifelong
program analysis and transformation</article_title>
<author>Lattner</author>
<journal_title>2004 IEEE/ACM international symposium on code
generation and optimization (CGO)</journal_title>
<doi>10.1109/CGO.2004.1281665</doi>
<cYear>2004</cYear>
<unstructured_citation>Lattner, C., &amp; Adve, V. (2004).
LLVM: A compilation framework for lifelong program analysis and
transformation. 2004 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), 75–88.
https://doi.org/10.1109/CGO.2004.1281665</unstructured_citation>
</citation>
<citation key="mlir">
<article_title>MLIR: Scaling compiler infrastructure for
domain specific computation</article_title>
<author>Lattner</author>
<journal_title>2021 IEEE/ACM international symposium on code
generation and optimization (CGO)</journal_title>
<doi>10.1109/CGO51591.2021.9370308</doi>
<cYear>2021</cYear>
<unstructured_citation>Lattner, C., Amini, M., Bondhugula,
U., Cohen, A., Davis, A., Pienaar, J., Riddle, R., Shpeisman, T.,
Vasilache, N., &amp; Zinenko, O. (2021). MLIR: Scaling compiler
infrastructure for domain specific computation. 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), 2–14.
https://doi.org/10.1109/CGO51591.2021.9370308</unstructured_citation>
</citation>
<citation key="borealis">
<article_title>Quantum computational advantage with a
programmable photonic processor</article_title>
<author>Madsen</author>
<journal_title>Nature</journal_title>
<issue>7912</issue>
<volume>606</volume>
<doi>10.1038/s41586-022-04725-x</doi>
<cYear>2022</cYear>
<unstructured_citation>Madsen, L. S., Laudenbach, F.,
Askarani, M. F., Rortais, F., Vincent, T., Bulmer, J. F., Miatto, F. M.,
Neuhaus, L., Helt, L. G., Collins, M. J., Lita, A. E., Gerrits, T., Nam,
S. W., Vaidya, V. D., Menotti, M., Dhand, I., Vernon, Z., Quesada, N.,
&amp; Lavoie, J. (2022). Quantum computational advantage with a
programmable photonic processor. Nature, 606(7912), 75–81.
https://doi.org/10.1038/s41586-022-04725-x</unstructured_citation>
</citation>
<citation key="enzyme">
<article_title>Instead of rewriting foreign code for machine
learning, automatically synthesize fast gradients</article_title>
<author>Moses</author>
<journal_title>Advances in neural information processing
systems</journal_title>
<volume>33</volume>
<cYear>2020</cYear>
<unstructured_citation>Moses, W., &amp; Churavy, V. (2020).
Instead of rewriting foreign code for machine learning, automatically
synthesize fast gradients. In H. Larochelle, M. Ranzato, R. Hadsell, M.
F. Balcan, &amp; H. Lin (Eds.), Advances in neural information
processing systems (Vol. 33, pp. 12472–12485). Curran Associates, Inc.
https://proceedings.neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf</unstructured_citation>
</citation>
<citation key="qir">
<volume_title>QIR Specification</volume_title>
<author>QIR Alliance</author>
<cYear>2021</cYear>
<unstructured_citation>QIR Alliance. (2021). QIR
Specification.
https://github.com/qir-alliance/qir-spec</unstructured_citation>
</citation>
<citation key="wierichs2021general">
<article_title>General parameter-shift rules for quantum
gradients</article_title>
<author>Wierichs</author>
<journal_title>Quantum</journal_title>
<volume>6</volume>
<doi>10.22331/q-2022-03-30-677</doi>
<issn>2521-327X</issn>
<cYear>2022</cYear>
<unstructured_citation>Wierichs, D., Izaac, J., Wang, C.,
&amp; Lin, C. Y.-Y. (2022). General parameter-shift rules for quantum
gradients. Quantum, 6, 677.
https://doi.org/10.22331/q-2022-03-30-677</unstructured_citation>
</citation>
<citation key="schuld2018gradients">
<article_title>Evaluating analytic gradients on quantum
hardware</article_title>
<author>Schuld</author>
<journal_title>Physical Review A</journal_title>
<issue>3</issue>
<volume>99</volume>
<doi>10.1103/physreva.99.032331</doi>
<cYear>2019</cYear>
<unstructured_citation>Schuld, M., Bergholm, V., Gogolin,
C., Izaac, J., &amp; Killoran, N. (2019). Evaluating analytic gradients
on quantum hardware. Physical Review A, 99(3), 032331.
https://doi.org/10.1103/physreva.99.032331</unstructured_citation>
</citation>
<citation key="moldovan2018autograph">
<article_title>AutoGraph: Imperative-style coding with
graph-based performance</article_title>
<author>Moldovan</author>
<journal_title>arXiv preprint
arXiv:1810.08061</journal_title>
<doi>10.48550/arXiv.1810.08061</doi>
<cYear>2018</cYear>
<unstructured_citation>Moldovan, D., Decker, J. M., Wang,
F., Johnson, A. A., Lee, B. K., Nado, Z., Sculley, D., Rompf, T., &amp;
Wiltschko, A. B. (2018). AutoGraph: Imperative-style coding with
graph-based performance. arXiv Preprint arXiv:1810.08061.
https://doi.org/10.48550/arXiv.1810.08061</unstructured_citation>
</citation>
<citation key="blondel2022efficient">
<article_title>Efficient and modular implicit
differentiation</article_title>
<author>Blondel</author>
<journal_title>Advances in neural information processing
systems</journal_title>
<volume>35</volume>
<cYear>2022</cYear>
<unstructured_citation>Blondel, M., Berthet, Q., Cuturi, M.,
Frostig, R., Hoyer, S., Llinares-López, F., Pedregosa, F., &amp; Vert,
J.-P. (2022). Efficient and modular implicit differentiation. Advances
in Neural Information Processing Systems, 35,
5230–5242.</unstructured_citation>
</citation>
<citation key="demos">
<article_title>PennyLane Demos</article_title>
<author>Xanadu</author>
<cYear>2018</cYear>
<unstructured_citation>Xanadu. (2018). PennyLane Demos.
https://pennylane.ai/qml/demonstrations</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.06720/10.21105.joss.06720.pdf
Binary file not shown.
Loading

0 comments on commit 87bcdbc

Please sign in to comment.