Skip to content

Commit

Permalink
Creating 10.21105.joss.03115.crossref.xml
Browse files Browse the repository at this point in the history
  • Loading branch information
whedon committed May 13, 2021
1 parent 04297dd commit 78a10aa
Showing 1 changed file with 132 additions and 0 deletions.
132 changes: 132 additions & 0 deletions joss.03115/10.21105.joss.03115.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/4.4.0" xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" xmlns:rel="http://www.crossref.org/relations.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.4.0" xsi:schemaLocation="http://www.crossref.org/schema/4.4.0 http://www.crossref.org/schemas/crossref4.4.0.xsd">
<head>
<doi_batch_id>8ef29d2ab0e853bdb190e4d3b4a6985e</doi_batch_id>
<timestamp>20210513135812</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>05</month>
<year>2021</year>
</publication_date>
<journal_volume>
<volume>6</volume>
</journal_volume>
<issue>61</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>PyGModels: A Python package for exploring Probabilistic Graphical Models with Graph Theoretical Structures</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Doğu</given_name>
<surname>Eraslan</surname>
<ORCID>http://orcid.org/0000-0002-1552-8938</ORCID>
</person_name>
</contributors>
<publication_date>
<month>05</month>
<day>13</day>
<year>2021</year>
</publication_date>
<pages>
<first_page>3115</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.03115</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">“https://doi.org/10.5281/zenodo.4751740”</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/3115</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.03115</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.03115</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.03115.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="ref1">
<doi>10.25080/Majora-7b98e3ed-001</doi>
</citation>
<citation key="ref2">
<unstructured_citation>Mastering probabilistic graphical models using python: master probabilistic graphical models by learning through real-world problems and illustrative code examples in Python, 978-1-78439-468-4, Ankan, Ankur and Panda, Abinash, 2015</unstructured_citation>
</citation>
<citation key="ref3">
<unstructured_citation>New York, Probabilistic networks and expert systems, http://accesbib.uqam.ca/cgi-bin/bduqam/transit.pl?&amp;noMan=25126878, Springer-Verlag, Cowell, Robert G, 2005</unstructured_citation>
</citation>
<citation key="ref4">
<doi>10.2200/S00893ED2V01Y201901AIM041</doi>
</citation>
<citation key="ref5">
<unstructured_citation>Hamburg, 5, Graph Theory, 978-3-662-53621-6, Springer, Diestel, Reinhard, 2017</unstructured_citation>
</citation>
<citation key="ref6">
<doi>10.1007/978-3-319-73235-0</doi>
</citation>
<citation key="ref7">
<unstructured_citation>Cambridge, NY, 2nd ed, Graph algorithms, 978-0-521-51718-8, Cambridge University Press, Even, Shimon and Even, Guy, 2012</unstructured_citation>
</citation>
<citation key="ref8">
<unstructured_citation>pyGM, https://github.com/ihler/pyGM, Ihler, Alexander, 2020, oct, 10</unstructured_citation>
</citation>
<citation key="ref9">
<unstructured_citation>pgmPy, https://github.com/indapa/pgmPy, Indap, Amit, 2013, aug, 8</unstructured_citation>
</citation>
<citation key="ref10">
<unstructured_citation>Cambridge, MA, Adaptive computation and machine learning, Probabilistic graphical models: principles and techniques, 978-0-262-01319-2, MIT Press, Koller, Daphne and Friedman, Nir, 2009, Adaptive computation and machine learning</unstructured_citation>
</citation>
<citation key="ref11">
<unstructured_citation>Oxford : New York, Oxford statistical science series, Graphical models, 978-0-19-852219-5, Clarendon Press ; Oxford University Press, Lauritzen, Steffen L., 1996, Oxford statistical science series</unstructured_citation>
</citation>
<citation key="ref12">
<doi>10.1111/1467-9868.00340</doi>
</citation>
<citation key="ref13">
<unstructured_citation>pyfac, https://github.com/rdlester/pyfac, Lester, Ryan, 2016, may, 5</unstructured_citation>
</citation>
<citation key="ref14">
<unstructured_citation>pgm, https://github.com/paulorauber/pgm, Rauber, Paulo, 2019, mar, 3</unstructured_citation>
</citation>
<citation key="ref15">
<unstructured_citation>London Heidelberg New York Dordrecht, Advances in computer vision and pattern recognition, Probabilistic graphical models: principles and applications, 978-1-4471-6698-6, Springer, Sucar, Luis Enrique, 2015, Advances in computer vision and pattern recognition</unstructured_citation>
</citation>
<citation key="ref16">
<unstructured_citation>Pomegranate: fast and flexible probabilistic modeling in python, http://arxiv.org/abs/1711.00137, arXiv: 1711.00137, arXiv:1711.00137 [cs, stat], Schreiber, Jacob, 2018, feb, 2</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>

0 comments on commit 78a10aa

Please sign in to comment.