Skip to content

Commit

Permalink
Merge pull request #2836 from openjournals/joss.03823
Browse files Browse the repository at this point in the history
Merging by @whedon bot
  • Loading branch information
whedon authored Dec 18, 2021
2 parents 6b5e30e + 2407d3b commit 016f94a
Show file tree
Hide file tree
Showing 2 changed files with 161 additions and 0 deletions.
161 changes: 161 additions & 0 deletions joss.03823/10.21105.joss.03823.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/4.4.0" xmlns:ai="http://www.crossref.org/AccessIndicators.xsd" xmlns:rel="http://www.crossref.org/relations.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="4.4.0" xsi:schemaLocation="http://www.crossref.org/schema/4.4.0 http://www.crossref.org/schemas/crossref4.4.0.xsd">
<head>
<doi_batch_id>f567a38fe7a4d1835f4a466548e89d8c</doi_batch_id>
<timestamp>20211218191633</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>12</month>
<year>2021</year>
</publication_date>
<journal_volume>
<volume>6</volume>
</journal_volume>
<issue>68</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>CCA-Zoo: A collection of Regularized, Deep Learning based, Kernel, and Probabilistic CCA methods in a scikit-learn style framework</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>James</given_name>
<surname>Chapman</surname>
<ORCID>http://orcid.org/0000-0002-9364-8118</ORCID>
</person_name>
<person_name sequence="additional" contributor_role="author">
<given_name>Hao-Ting</given_name>
<surname>Wang</surname>
<ORCID>http://orcid.org/0000-0003-4078-2038</ORCID>
</person_name>
</contributors>
<publication_date>
<month>12</month>
<day>18</day>
<year>2021</year>
</publication_date>
<pages>
<first_page>3823</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.03823</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">“https://doi.org/10.5281/zenodo.5786616”</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/3823</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.03823</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.03823</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.03823.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="ref1">
<doi>10.2307/2333955</doi>
</citation>
<citation key="ref2">
<doi>10.1016/0304-4076(76)90010-5</doi>
</citation>
<citation key="ref3">
<unstructured_citation>A probabilistic interpretation of canonical correlation analysis, Bach, Francis R and Jordan, Michael I, 2005, https://statistics.berkeley.edu/sites/default/files/tech-reports/688.pdf, Technical Report 688, Department of Statistics, University of California Berkeley</unstructured_citation>
</citation>
<citation key="ref4">
<doi>10.1162/0899766042321814</doi>
</citation>
<citation key="ref5">
<doi>10.1093/biostatistics/kxp008</doi>
</citation>
<citation key="ref6">
<doi>10.2202/1544-6115.1329</doi>
</citation>
<citation key="ref7">
<doi>10.2202/1544-6115.1406</doi>
</citation>
<citation key="ref8">
<doi>10.1111/biom.13043</doi>
</citation>
<citation key="ref9">
<unstructured_citation>A simple and provable algorithm for sparse diagonal CCA, Asteris, Megasthenis and Kyrillidis, Anastasios and Koyejo, Oluwasanmi and Poldrack, Russell, International Conference on Machine Learning, 1148–1157, 2016, PMLR</unstructured_citation>
</citation>
<citation key="ref10">
<doi>10.1049/cje.2017.08.004</doi>
</citation>
<citation key="ref11">
<unstructured_citation>Deep canonical correlation analysis, Andrew, Galen and Arora, Raman and Bilmes, Jeff and Livescu, Karen, International conference on machine learning, 1247–1255, 2013, PMLR</unstructured_citation>
</citation>
<citation key="ref12">
<unstructured_citation>Pytorch: An imperative style, high-performance deep learning library, Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and others, Advances in neural information processing systems, 32, 8026–8037, 2019</unstructured_citation>
</citation>
<citation key="ref13">
<unstructured_citation>Scikit-learn: Machine learning in Python, Pedregosa, Fabian and Varoquaux, Gaël and Gramfort, Alexandre and Michel, Vincent and Thirion, Bertrand and Grisel, Olivier and Blondel, Mathieu and Prettenhofer, Peter and Weiss, Ron and Dubourg, Vincent and others, the Journal of machine Learning research, 12, 2825–2830, 2011, JMLR. org</unstructured_citation>
</citation>
<citation key="ref14">
<doi>10.3389/fninf.2016.00049</doi>
</citation>
<citation key="ref15">
<unstructured_citation>mvlearn: Multiview machine learning in python, Perry, Ronan and Mischler, Gavin and Guo, Richard and Lee, Theodore and Chang, Alexander and Koul, Arman and Franz, Cameron and Richard, Hugo and Carmichael, Iain and Ablin, Pierre and others, arXiv preprint arXiv:2005.11890, 2020</unstructured_citation>
</citation>
<citation key="ref16">
<doi>10.1007/978-1-4612-4228-4_3</doi>
</citation>
<citation key="ref17">
<doi>10.1109/allerton.2015.7447071</doi>
</citation>
<citation key="ref18">
<doi>10.1109/cvpr.2007.383137</doi>
</citation>
<citation key="ref19">
<unstructured_citation>Multimodal deep learning, Ngiam, Jiquan and Khosla, Aditya and Kim, Mingyu and Nam, Juhan and Lee, Honglak and Ng, Andrew Y, ICML, 2011</unstructured_citation>
</citation>
<citation key="ref20">
<unstructured_citation>Sparse canonical correlation analysis, Suo, Xiaotong and Minden, Victor and Nelson, Bradley and Tibshirani, Robert and Saunders, Michael, arXiv preprint arXiv:1705.10865, 2017</unstructured_citation>
</citation>
<citation key="ref21">
<unstructured_citation>On deep multi-view representation learning, Wang, Weiran and Arora, Raman and Livescu, Karen and Bilmes, Jeff, International conference on machine learning, 1083–1092, 2015, PMLR</unstructured_citation>
</citation>
<citation key="ref22">
<unstructured_citation>Deep variational canonical correlation analysis, Wang, Weiran and Yan, Xinchen and Lee, Honglak and Livescu, Karen, arXiv preprint arXiv:1610.03454, 2016</unstructured_citation>
</citation>
<citation key="ref23">
<doi>10.1109/tnn.2007.891186</doi>
</citation>
<citation key="ref24">
<unstructured_citation>Deep Tensor CCA for Multi-view Learning, Wong, Hok Shing and Wang, Li and Chan, Raymond and Zeng, Tieyong, IEEE Transactions on Big Data, 2021, IEEE</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.03823/10.21105.joss.03823.pdf
Binary file not shown.

0 comments on commit 016f94a

Please sign in to comment.