Skip to content

Commit

Permalink
Add script to evaluate face recognition by LFW (#72)
Browse files Browse the repository at this point in the history
  • Loading branch information
WanliZhong authored Jul 29, 2022
1 parent b1b4df4 commit f416422
Show file tree
Hide file tree
Showing 6 changed files with 310 additions and 2 deletions.
11 changes: 11 additions & 0 deletions models/face_recognition_sface/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,16 @@ Note:
- [face_recognition_sface_2021sep.onnx](./face_recognition_sface_2021sep.onnx) is converted from the model from https://github.com/zhongyy/SFace thanks to [Chengrui Wang](https://github.com/crywang).
- Support 5-landmark warpping for now (2021sep)

Results of accuracy evaluation with [tools/eval](../../tools/eval).

| Models | Accuracy |
|-------------|----------|
| SFace | 0.9940 |
| SFace quant | 0.9932 |

\*: 'quant' stands for 'quantized'.


## Demo

***NOTE***: This demo uses [../face_detection_yunet](../face_detection_yunet) as face detector, which supports 5-landmark detection for now (2021sep).
Expand All @@ -17,6 +27,7 @@ Run the following command to try the demo:
python demo.py --input1 /path/to/image1 --input2 /path/to/image2
```


## License

All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
Expand Down
44 changes: 44 additions & 0 deletions tools/eval/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ Make sure you have the following packages installed:

```shell
pip install tqdm
pip install scikit-learn
pip install scipy
```

Expand All @@ -14,8 +15,10 @@ python eval.py -m model_name -d dataset_name -dr dataset_root_dir
```

Supported datasets:

- [ImageNet](#imagenet)
- [WIDERFace](#widerface)
- [LFW](#lfw)

## ImageNet

Expand Down Expand Up @@ -94,3 +97,44 @@ Run evaluation with the following command:
```shell
python eval.py -m yunet -d widerface -dr /path/to/widerface
```

## LFW

The script is modified based on [evaluation of InsightFace](https://github.com/deepinsight/insightface/blob/f92bf1e48470fdd567e003f196f8ff70461f7a20/src/eval/lfw.py).

This evaluation uses [YuNet](../../models/face_detection_yunet) as face detector. The structure of the face bounding boxes saved in [lfw_face_bboxes.npy](../eval/datasets/lfw_face_bboxes.npy) is shown below.
Each row represents the bounding box of the main face that will be used in each image.

```shell
[
[x, y, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm],
...
[x, y, w, h, x_re, y_re, x_le, y_le, x_nt, y_nt, x_rcm, y_rcm, x_lcm, y_lcm]
]
```

`x1, y1, w, h` are the top-left coordinates, width and height of the face bounding box, `{x, y}_{re, le, nt, rcm, lcm}` stands for the coordinates of right eye, left eye, nose tip, the right corner and left corner of the mouth respectively. Data type of this numpy array is `np.float32`.


### Prepare data

Please visit http://vis-www.cs.umass.edu/lfw to download the LFW [all images](http://vis-www.cs.umass.edu/lfw/lfw.tgz)(needs to be decompressed) and [pairs.txt](http://vis-www.cs.umass.edu/lfw/pairs.txt)(needs to be placed in the `view2` folder). Organize files as follow:

```shell
$ tree -L 2 /path/to/lfw
.
├── lfw
│   ├── Aaron_Eckhart
│   ├── ...
│   └── Zydrunas_Ilgauskas
└── view2
   └── pairs.txt
```

### Evaluation

Run evaluation with the following command:

```shell
python eval.py -m sface -d lfw -dr /path/to/lfw
```
2 changes: 2 additions & 0 deletions tools/eval/datasets/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
from .imagenet import ImageNet
from .widerface import WIDERFace
from .lfw import LFW

class Registery:
def __init__(self, name):
Expand All @@ -15,3 +16,4 @@ def register(self, item):
DATASETS = Registery("Datasets")
DATASETS.register(ImageNet)
DATASETS.register(WIDERFace)
DATASETS.register(LFW)
239 changes: 239 additions & 0 deletions tools/eval/datasets/lfw.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,239 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import numpy as np

from sklearn.model_selection import KFold
from scipy import interpolate
import sklearn
from sklearn.decomposition import PCA

import cv2 as cv
from tqdm import tqdm


def calculate_roc(thresholds,
embeddings1,
embeddings2,
actual_issame,
nrof_folds=10,
pca=0):
assert (embeddings1.shape[0] == embeddings2.shape[0])
assert (embeddings1.shape[1] == embeddings2.shape[1])
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = KFold(n_splits=nrof_folds, shuffle=False)

tprs = np.zeros((nrof_folds, nrof_thresholds))
fprs = np.zeros((nrof_folds, nrof_thresholds))
accuracy = np.zeros((nrof_folds))
indices = np.arange(nrof_pairs)
# print('pca', pca)

if pca == 0:
diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)

for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):
# print('train_set', train_set)
# print('test_set', test_set)
if pca > 0:
print('doing pca on', fold_idx)
embed1_train = embeddings1[train_set]
embed2_train = embeddings2[train_set]
_embed_train = np.concatenate((embed1_train, embed2_train), axis=0)
# print(_embed_train.shape)
pca_model = PCA(n_components=pca)
pca_model.fit(_embed_train)
embed1 = pca_model.transform(embeddings1)
embed2 = pca_model.transform(embeddings2)
embed1 = sklearn.preprocessing.normalize(embed1)
embed2 = sklearn.preprocessing.normalize(embed2)
# print(embed1.shape, embed2.shape)
diff = np.subtract(embed1, embed2)
dist = np.sum(np.square(diff), 1)

# Find the best threshold for the fold
acc_train = np.zeros((nrof_thresholds))
for threshold_idx, threshold in enumerate(thresholds):
_, _, acc_train[threshold_idx] = calculate_accuracy(
threshold, dist[train_set], actual_issame[train_set])
best_threshold_index = np.argmax(acc_train)
for threshold_idx, threshold in enumerate(thresholds):
tprs[fold_idx,
threshold_idx], fprs[fold_idx,
threshold_idx], _ = calculate_accuracy(
threshold, dist[test_set],
actual_issame[test_set])
_, _, accuracy[fold_idx] = calculate_accuracy(
thresholds[best_threshold_index], dist[test_set],
actual_issame[test_set])

tpr = np.mean(tprs, 0)
fpr = np.mean(fprs, 0)
return tpr, fpr, accuracy


def calculate_accuracy(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
tp = np.sum(np.logical_and(predict_issame, actual_issame))
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
tn = np.sum(
np.logical_and(np.logical_not(predict_issame),
np.logical_not(actual_issame)))
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))

tpr = 0 if (tp + fn == 0) else float(tp) / float(tp + fn)
fpr = 0 if (fp + tn == 0) else float(fp) / float(fp + tn)
acc = float(tp + tn) / dist.size
return tpr, fpr, acc


def calculate_val(thresholds,
embeddings1,
embeddings2,
actual_issame,
far_target,
nrof_folds=10):
assert (embeddings1.shape[0] == embeddings2.shape[0])
assert (embeddings1.shape[1] == embeddings2.shape[1])
nrof_pairs = min(len(actual_issame), embeddings1.shape[0])
nrof_thresholds = len(thresholds)
k_fold = KFold(n_splits=nrof_folds, shuffle=False)

val = np.zeros(nrof_folds)
far = np.zeros(nrof_folds)

diff = np.subtract(embeddings1, embeddings2)
dist = np.sum(np.square(diff), 1)
indices = np.arange(nrof_pairs)

for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)):

# Find the threshold that gives FAR = far_target
far_train = np.zeros(nrof_thresholds)
for threshold_idx, threshold in enumerate(thresholds):
_, far_train[threshold_idx] = calculate_val_far(
threshold, dist[train_set], actual_issame[train_set])
if np.max(far_train) >= far_target:
f = interpolate.interp1d(far_train, thresholds, kind='slinear')
threshold = f(far_target)
else:
threshold = 0.0

val[fold_idx], far[fold_idx] = calculate_val_far(
threshold, dist[test_set], actual_issame[test_set])

val_mean = np.mean(val)
far_mean = np.mean(far)
val_std = np.std(val)
return val_mean, val_std, far_mean


def calculate_val_far(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
true_accept = np.sum(np.logical_and(predict_issame, actual_issame))
false_accept = np.sum(
np.logical_and(predict_issame, np.logical_not(actual_issame)))
n_same = np.sum(actual_issame)
n_diff = np.sum(np.logical_not(actual_issame))
val = float(true_accept) / float(n_same)
far = float(false_accept) / float(n_diff)
return val, far


def evaluate(embeddings, actual_issame, nrof_folds=10, pca=0):
# Calculate evaluation metrics
thresholds = np.arange(0, 4, 0.01)
embeddings1 = embeddings[0::2]
embeddings2 = embeddings[1::2]
tpr, fpr, accuracy = calculate_roc(thresholds,
embeddings1,
embeddings2,
np.asarray(actual_issame),
nrof_folds=nrof_folds,
pca=pca)
thresholds = np.arange(0, 4, 0.001)
val, val_std, far = calculate_val(thresholds,
embeddings1,
embeddings2,
np.asarray(actual_issame),
1e-3,
nrof_folds=nrof_folds)
return tpr, fpr, accuracy, val, val_std, far


class LFW:
def __init__(self, root, target_size=250):
self.LFW_IMAGE_SIZE = 250

self.lfw_root = root
self.target_size = target_size

self.lfw_pairs_path = os.path.join(self.lfw_root, 'view2/pairs.txt')
self.image_path_pattern = os.path.join(self.lfw_root, 'lfw', '{person_name}', '{image_name}')

self.lfw_image_paths, self.id_list = self.load_pairs()

@property
def name(self):
return 'LFW'

def __len__(self):
return len(self.lfw_image_paths)

@property
def ids(self):
return self.id_list

def load_pairs(self):
image_paths = []
id_list = []
with open(self.lfw_pairs_path, 'r') as f:
for line in f.readlines()[1:]:
line = line.strip().split()
if len(line) == 3:
person_name = line[0]
image1_name = '{}_{:04d}.jpg'.format(person_name, int(line[1]))
image2_name = '{}_{:04d}.jpg'.format(person_name, int(line[2]))
image_paths += [
self.image_path_pattern.format(person_name=person_name, image_name=image1_name),
self.image_path_pattern.format(person_name=person_name, image_name=image2_name)
]
id_list.append(True)
elif len(line) == 4:
person1_name = line[0]
image1_name = '{}_{:04d}.jpg'.format(person1_name, int(line[1]))
person2_name = line[2]
image2_name = '{}_{:04d}.jpg'.format(person2_name, int(line[3]))
image_paths += [
self.image_path_pattern.format(person_name=person1_name, image_name=image1_name),
self.image_path_pattern.format(person_name=person2_name, image_name=image2_name)
]
id_list.append(False)
return image_paths, id_list

def __getitem__(self, key):
img = cv.imread(self.lfw_image_paths[key])
if self.target_size != self.LFW_IMAGE_SIZE:
img = cv.resize(img, (self.target_size, self.target_size))
return img

def eval(self, model):
ids = self.ids
embeddings = np.zeros(shape=(len(self), 128))
face_bboxes = np.load("./datasets/lfw_face_bboxes.npy")
for idx, img in tqdm(enumerate(self), desc="Evaluating {} with {} val set".format(model.name, self.name)):
embedding = model.infer(img, face_bboxes[idx])
embeddings[idx] = embedding

embeddings = sklearn.preprocessing.normalize(embeddings)
self.tpr, self.fpr, self.acc, self.val, self.std, self.far = evaluate(embeddings, ids, nrof_folds=10)
self.acc, self.std = np.mean(self.acc), np.std(self.acc)

def print_result(self):
print("==================== Results ====================")
print("Average Accuracy: {:.4f}".format(self.acc))
print("=================================================")
Binary file added tools/eval/datasets/lfw_face_bboxes.npy
Binary file not shown.
16 changes: 14 additions & 2 deletions tools/eval/eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,15 @@
modelPath=os.path.join(root_dir, "models/face_detection_yunet/face_detection_yunet_2022mar-act_int8-wt_int8-quantized.onnx"),
topK=5000,
confThreshold=0.3,
nmsThreshold=0.45)
nmsThreshold=0.45),
sface=dict(
name="SFace",
topic="face_recognition",
modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec.onnx")),
sface_q=dict(
name="SFace",
topic="face_recognition",
modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec-act_int8-wt_int8-quantized.onnx")),
)

datasets = dict(
Expand All @@ -74,7 +82,11 @@
size=224),
widerface=dict(
name="WIDERFace",
topic="face_detection")
topic="face_detection"),
lfw=dict(
name="LFW",
topic="face_recognition",
target_size=112),
)

def main(args):
Expand Down

0 comments on commit f416422

Please sign in to comment.