-
Notifications
You must be signed in to change notification settings - Fork 5.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
cuda: move CUDA modules to opencv_contrib
OpenCV 4.0+
- Loading branch information
Showing
458 changed files
with
120,709 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
if(IOS OR WINRT OR (NOT HAVE_CUDA AND NOT BUILD_CUDA_STUBS)) | ||
ocv_module_disable(cudaarithm) | ||
endif() | ||
|
||
set(the_description "CUDA-accelerated Operations on Matrices") | ||
|
||
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4127 /wd4324 /wd4512 -Wundef -Wmissing-declarations -Wshadow) | ||
|
||
ocv_add_module(cudaarithm opencv_core OPTIONAL opencv_cudev WRAP python) | ||
|
||
ocv_module_include_directories() | ||
ocv_glob_module_sources() | ||
|
||
set(extra_libs "") | ||
|
||
if(HAVE_CUBLAS) | ||
list(APPEND extra_libs ${CUDA_cublas_LIBRARY}) | ||
endif() | ||
|
||
if(HAVE_CUFFT) | ||
list(APPEND extra_libs ${CUDA_cufft_LIBRARY}) | ||
endif() | ||
|
||
ocv_create_module(${extra_libs}) | ||
|
||
ocv_add_accuracy_tests(DEPENDS_ON opencv_imgproc) | ||
ocv_add_perf_tests(DEPENDS_ON opencv_imgproc) |
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
/*M/////////////////////////////////////////////////////////////////////////////////////// | ||
// | ||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. | ||
// | ||
// By downloading, copying, installing or using the software you agree to this license. | ||
// If you do not agree to this license, do not download, install, | ||
// copy or use the software. | ||
// | ||
// | ||
// License Agreement | ||
// For Open Source Computer Vision Library | ||
// | ||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. | ||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. | ||
// Third party copyrights are property of their respective owners. | ||
// | ||
// Redistribution and use in source and binary forms, with or without modification, | ||
// are permitted provided that the following conditions are met: | ||
// | ||
// * Redistribution's of source code must retain the above copyright notice, | ||
// this list of conditions and the following disclaimer. | ||
// | ||
// * Redistribution's in binary form must reproduce the above copyright notice, | ||
// this list of conditions and the following disclaimer in the documentation | ||
// and/or other materials provided with the distribution. | ||
// | ||
// * The name of the copyright holders may not be used to endorse or promote products | ||
// derived from this software without specific prior written permission. | ||
// | ||
// This software is provided by the copyright holders and contributors "as is" and | ||
// any express or implied warranties, including, but not limited to, the implied | ||
// warranties of merchantability and fitness for a particular purpose are disclaimed. | ||
// In no event shall the Intel Corporation or contributors be liable for any direct, | ||
// indirect, incidental, special, exemplary, or consequential damages | ||
// (including, but not limited to, procurement of substitute goods or services; | ||
// loss of use, data, or profits; or business interruption) however caused | ||
// and on any theory of liability, whether in contract, strict liability, | ||
// or tort (including negligence or otherwise) arising in any way out of | ||
// the use of this software, even if advised of the possibility of such damage. | ||
// | ||
//M*/ | ||
|
||
#include "perf_precomp.hpp" | ||
|
||
namespace opencv_test { namespace { | ||
|
||
////////////////////////////////////////////////////////////////////// | ||
// GEMM | ||
|
||
#ifdef HAVE_CUBLAS | ||
|
||
CV_FLAGS(GemmFlags, 0, cv::GEMM_1_T, cv::GEMM_2_T, cv::GEMM_3_T) | ||
#define ALL_GEMM_FLAGS Values(GemmFlags(0), GemmFlags(cv::GEMM_1_T), GemmFlags(cv::GEMM_2_T), GemmFlags(cv::GEMM_3_T), \ | ||
GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_3_T), GemmFlags(cv::GEMM_1_T | cv::GEMM_2_T | cv::GEMM_3_T)) | ||
|
||
DEF_PARAM_TEST(Sz_Type_Flags, cv::Size, MatType, GemmFlags); | ||
|
||
PERF_TEST_P(Sz_Type_Flags, GEMM, | ||
Combine(Values(cv::Size(512, 512), cv::Size(1024, 1024)), | ||
Values(CV_32FC1, CV_32FC2, CV_64FC1), | ||
ALL_GEMM_FLAGS)) | ||
{ | ||
const cv::Size size = GET_PARAM(0); | ||
const int type = GET_PARAM(1); | ||
const int flags = GET_PARAM(2); | ||
|
||
cv::Mat src1(size, type); | ||
declare.in(src1, WARMUP_RNG); | ||
|
||
cv::Mat src2(size, type); | ||
declare.in(src2, WARMUP_RNG); | ||
|
||
cv::Mat src3(size, type); | ||
declare.in(src3, WARMUP_RNG); | ||
|
||
if (PERF_RUN_CUDA()) | ||
{ | ||
declare.time(5.0); | ||
|
||
const cv::cuda::GpuMat d_src1(src1); | ||
const cv::cuda::GpuMat d_src2(src2); | ||
const cv::cuda::GpuMat d_src3(src3); | ||
cv::cuda::GpuMat dst; | ||
|
||
TEST_CYCLE() cv::cuda::gemm(d_src1, d_src2, 1.0, d_src3, 1.0, dst, flags); | ||
|
||
CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); | ||
} | ||
else | ||
{ | ||
declare.time(50.0); | ||
|
||
cv::Mat dst; | ||
|
||
TEST_CYCLE() cv::gemm(src1, src2, 1.0, src3, 1.0, dst, flags); | ||
|
||
CPU_SANITY_CHECK(dst); | ||
} | ||
} | ||
|
||
#endif | ||
|
||
////////////////////////////////////////////////////////////////////// | ||
// MulSpectrums | ||
|
||
CV_FLAGS(DftFlags, 0, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX_OUTPUT, cv::DFT_REAL_OUTPUT) | ||
|
||
DEF_PARAM_TEST(Sz_Flags, cv::Size, DftFlags); | ||
|
||
PERF_TEST_P(Sz_Flags, MulSpectrums, | ||
Combine(CUDA_TYPICAL_MAT_SIZES, | ||
Values(0, DftFlags(cv::DFT_ROWS)))) | ||
{ | ||
const cv::Size size = GET_PARAM(0); | ||
const int flag = GET_PARAM(1); | ||
|
||
cv::Mat a(size, CV_32FC2); | ||
cv::Mat b(size, CV_32FC2); | ||
declare.in(a, b, WARMUP_RNG); | ||
|
||
if (PERF_RUN_CUDA()) | ||
{ | ||
const cv::cuda::GpuMat d_a(a); | ||
const cv::cuda::GpuMat d_b(b); | ||
cv::cuda::GpuMat dst; | ||
|
||
TEST_CYCLE() cv::cuda::mulSpectrums(d_a, d_b, dst, flag); | ||
|
||
CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); | ||
} | ||
else | ||
{ | ||
cv::Mat dst; | ||
|
||
TEST_CYCLE() cv::mulSpectrums(a, b, dst, flag); | ||
|
||
CPU_SANITY_CHECK(dst); | ||
} | ||
} | ||
|
||
////////////////////////////////////////////////////////////////////// | ||
// MulAndScaleSpectrums | ||
|
||
PERF_TEST_P(Sz, MulAndScaleSpectrums, | ||
CUDA_TYPICAL_MAT_SIZES) | ||
{ | ||
const cv::Size size = GetParam(); | ||
|
||
const float scale = 1.f / size.area(); | ||
|
||
cv::Mat src1(size, CV_32FC2); | ||
cv::Mat src2(size, CV_32FC2); | ||
declare.in(src1,src2, WARMUP_RNG); | ||
|
||
if (PERF_RUN_CUDA()) | ||
{ | ||
const cv::cuda::GpuMat d_src1(src1); | ||
const cv::cuda::GpuMat d_src2(src2); | ||
cv::cuda::GpuMat dst; | ||
|
||
TEST_CYCLE() cv::cuda::mulAndScaleSpectrums(d_src1, d_src2, dst, cv::DFT_ROWS, scale, false); | ||
|
||
CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); | ||
} | ||
else | ||
{ | ||
FAIL_NO_CPU(); | ||
} | ||
} | ||
|
||
////////////////////////////////////////////////////////////////////// | ||
// Dft | ||
|
||
PERF_TEST_P(Sz_Flags, Dft, | ||
Combine(CUDA_TYPICAL_MAT_SIZES, | ||
Values(0, DftFlags(cv::DFT_ROWS), DftFlags(cv::DFT_INVERSE)))) | ||
{ | ||
declare.time(10.0); | ||
|
||
const cv::Size size = GET_PARAM(0); | ||
const int flag = GET_PARAM(1); | ||
|
||
cv::Mat src(size, CV_32FC2); | ||
declare.in(src, WARMUP_RNG); | ||
|
||
if (PERF_RUN_CUDA()) | ||
{ | ||
const cv::cuda::GpuMat d_src(src); | ||
cv::cuda::GpuMat dst; | ||
|
||
TEST_CYCLE() cv::cuda::dft(d_src, dst, size, flag); | ||
|
||
CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); | ||
} | ||
else | ||
{ | ||
cv::Mat dst; | ||
|
||
TEST_CYCLE() cv::dft(src, dst, flag); | ||
|
||
CPU_SANITY_CHECK(dst); | ||
} | ||
} | ||
|
||
////////////////////////////////////////////////////////////////////// | ||
// Convolve | ||
|
||
DEF_PARAM_TEST(Sz_KernelSz_Ccorr, cv::Size, int, bool); | ||
|
||
PERF_TEST_P(Sz_KernelSz_Ccorr, Convolve, | ||
Combine(CUDA_TYPICAL_MAT_SIZES, | ||
Values(17, 27, 32, 64), | ||
Bool())) | ||
{ | ||
declare.time(10.0); | ||
|
||
const cv::Size size = GET_PARAM(0); | ||
const int templ_size = GET_PARAM(1); | ||
const bool ccorr = GET_PARAM(2); | ||
|
||
const cv::Mat image(size, CV_32FC1); | ||
const cv::Mat templ(templ_size, templ_size, CV_32FC1); | ||
declare.in(image, templ, WARMUP_RNG); | ||
|
||
if (PERF_RUN_CUDA()) | ||
{ | ||
cv::cuda::GpuMat d_image = cv::cuda::createContinuous(size, CV_32FC1); | ||
d_image.upload(image); | ||
|
||
cv::cuda::GpuMat d_templ = cv::cuda::createContinuous(templ_size, templ_size, CV_32FC1); | ||
d_templ.upload(templ); | ||
|
||
cv::Ptr<cv::cuda::Convolution> convolution = cv::cuda::createConvolution(); | ||
|
||
cv::cuda::GpuMat dst; | ||
|
||
TEST_CYCLE() convolution->convolve(d_image, d_templ, dst, ccorr); | ||
|
||
CUDA_SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); | ||
} | ||
else | ||
{ | ||
if (ccorr) | ||
FAIL_NO_CPU(); | ||
|
||
cv::Mat dst; | ||
|
||
TEST_CYCLE() cv::filter2D(image, dst, image.depth(), templ); | ||
|
||
CPU_SANITY_CHECK(dst); | ||
} | ||
} | ||
|
||
}} // namespace |
Oops, something went wrong.