-
Notifications
You must be signed in to change notification settings - Fork 649
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add OpenTelemetry Python SDK Benchmarks - Python 3.11 - SDK (pytest) …
…benchmark result for 373ed51
- Loading branch information
github-action-benchmark
committed
Jan 25, 2024
1 parent
97666bd
commit 1042de5
Showing
1 changed file
with
319 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
window.BENCHMARK_DATA = { | ||
"lastUpdate": 1706212862832, | ||
"lastUpdate": 1706212926929, | ||
"repoUrl": "https://github.com/open-telemetry/opentelemetry-python", | ||
"entries": { | ||
"OpenTelemetry Python SDK Benchmarks - Python 3.11 - SDK": [ | ||
|
@@ -4772,6 +4772,324 @@ window.BENCHMARK_DATA = { | |
"extra": "mean: 16.940628191788978 usec\nrounds: 23542" | ||
} | ||
] | ||
}, | ||
{ | ||
"commit": { | ||
"author": { | ||
"email": "[email protected]", | ||
"name": "Ben Beasley", | ||
"username": "musicinmybrain" | ||
}, | ||
"committer": { | ||
"email": "[email protected]", | ||
"name": "GitHub", | ||
"username": "web-flow" | ||
}, | ||
"distinct": true, | ||
"id": "373ed5175cea87951aa6b8f0922284357828bb99", | ||
"message": "Don’t pin an exact version of responses for testing (#3642)\n\n* Don’t pin an exact version of responses for testing\r\n\r\nIn the test dependencies for opentelemetry-exporter-otlp-proto-http,\r\nallow `responses >= 0.22.0` rather than `responses == 0.22.0`.\r\n\r\nThese tests use responses in a very straightforward way, and it’s\r\nunlikely that they will be affected by any future breaking changes;\r\nmeanwhile, allowing newer versions helps with compatibility with newer\r\nPython interpreter versions and makes distribution packagers’ lives\r\neasier.\r\n\r\n* Upper-bound responses test dependency to the current minor release\r\n\r\nAs requested in:\r\n\r\nhttps://github.com/open-telemetry/opentelemetry-python/pull/3642#issuecomment-1904877072\r\n\r\n---------\r\n\r\nCo-authored-by: Diego Hurtado <[email protected]>", | ||
"timestamp": "2024-01-25T14:00:06-06:00", | ||
"tree_id": "58b1e45f7efe446d36b3a82cd2f08d6d2108365e", | ||
"url": "https://github.com/open-telemetry/opentelemetry-python/commit/373ed5175cea87951aa6b8f0922284357828bb99" | ||
}, | ||
"date": 1706212926133, | ||
"tool": "pytest", | ||
"benches": [ | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[0-delta]", | ||
"value": 920662.1647187257, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.2285936696621584e-7", | ||
"extra": "mean: 1.0861747536953612 usec\nrounds: 33547" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[1-delta]", | ||
"value": 874403.4419468739, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.9728018028013057e-7", | ||
"extra": "mean: 1.1436368523132563 usec\nrounds: 97472" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[3-delta]", | ||
"value": 785042.9293860986, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.2903326049868506e-7", | ||
"extra": "mean: 1.2738156890120609 usec\nrounds: 109633" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[5-delta]", | ||
"value": 681409.4966055285, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.34861843566335e-7", | ||
"extra": "mean: 1.4675463212378812 usec\nrounds: 112883" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[10-delta]", | ||
"value": 575722.0700653967, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.3347016722002748e-7", | ||
"extra": "mean: 1.7369492190674733 usec\nrounds: 108701" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[0-cumulative]", | ||
"value": 914030.5063448806, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.1970008145211992e-7", | ||
"extra": "mean: 1.09405538771228 usec\nrounds: 50582" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[1-cumulative]", | ||
"value": 865155.7507385486, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.6882384561360053e-7", | ||
"extra": "mean: 1.1558612413387306 usec\nrounds: 131041" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[3-cumulative]", | ||
"value": 780611.8781976318, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.7122086963265663e-7", | ||
"extra": "mean: 1.2810463534181893 usec\nrounds: 115457" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[5-cumulative]", | ||
"value": 685028.0652140325, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.4407236941134456e-7", | ||
"extra": "mean: 1.4597942052017336 usec\nrounds: 123447" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_counter_add[10-cumulative]", | ||
"value": 577519.743598557, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.4757463004145924e-7", | ||
"extra": "mean: 1.7315425335399712 usec\nrounds: 117942" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[0]", | ||
"value": 932135.8819972951, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.4924394683340895e-7", | ||
"extra": "mean: 1.07280496257401 usec\nrounds: 35456" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[1]", | ||
"value": 880681.8319527264, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.1167111778633252e-7", | ||
"extra": "mean: 1.135483853212585 usec\nrounds: 137836" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[3]", | ||
"value": 791501.483206191, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.0315857309751804e-7", | ||
"extra": "mean: 1.2634215111628464 usec\nrounds: 126980" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[5]", | ||
"value": 698213.1834372679, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.1888519884983315e-7", | ||
"extra": "mean: 1.432227325008461 usec\nrounds: 118437" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics.py::test_up_down_counter_add[10]", | ||
"value": 581380.6399352791, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.812210928385699e-7", | ||
"extra": "mean: 1.720043515916393 usec\nrounds: 122518" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record[0]", | ||
"value": 775214.951949507, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.0808078168563542e-7", | ||
"extra": "mean: 1.2899647994213794 usec\nrounds: 3735" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record[1]", | ||
"value": 812933.8491749213, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.0318788966731691e-7", | ||
"extra": "mean: 1.2301123898518183 usec\nrounds: 170761" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record[3]", | ||
"value": 759559.9433021991, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.5986862748046277e-7", | ||
"extra": "mean: 1.3165517860940426 usec\nrounds: 76326" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record[5]", | ||
"value": 766582.5693852792, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.643103006503197e-7", | ||
"extra": "mean: 1.3044909184432638 usec\nrounds: 174991" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record[7]", | ||
"value": 814709.246430353, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.0722756687268551e-7", | ||
"extra": "mean: 1.2274317548027078 usec\nrounds: 192358" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_10[0]", | ||
"value": 771180.3677283775, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.1644602791023105e-7", | ||
"extra": "mean: 1.296713508080663 usec\nrounds: 18687" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_10[1]", | ||
"value": 814765.7403272269, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.1452484141453702e-7", | ||
"extra": "mean: 1.2273466476368766 usec\nrounds: 189842" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_10[3]", | ||
"value": 815559.7409708193, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.0562758411404218e-7", | ||
"extra": "mean: 1.2261517455602067 usec\nrounds: 190515" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_10[5]", | ||
"value": 770228.416099907, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.1007828056108862e-7", | ||
"extra": "mean: 1.2983161606313536 usec\nrounds: 193817" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_10[7]", | ||
"value": 813362.521306825, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.1043594592963914e-7", | ||
"extra": "mean: 1.2294640751252044 usec\nrounds: 191262" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_49[0]", | ||
"value": 753629.326322667, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.2605454932867044e-7", | ||
"extra": "mean: 1.3269122698283229 usec\nrounds: 30444" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_49[1]", | ||
"value": 789288.9668138286, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.206527155409295e-7", | ||
"extra": "mean: 1.2669631048268186 usec\nrounds: 186673" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_49[3]", | ||
"value": 741411.2963208574, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.445494605801839e-7", | ||
"extra": "mean: 1.3487790177494603 usec\nrounds: 199507" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_49[5]", | ||
"value": 747041.1425441288, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.1284963831332126e-7", | ||
"extra": "mean: 1.338614358767969 usec\nrounds: 186026" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_49[7]", | ||
"value": 789476.1121176707, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.1469367799523994e-7", | ||
"extra": "mean: 1.266662771236517 usec\nrounds: 183358" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_50[0]", | ||
"value": 748483.7788111992, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.1038674095608587e-7", | ||
"extra": "mean: 1.3360342980154876 usec\nrounds: 29649" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_50[1]", | ||
"value": 788817.416435889, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.1139627781741104e-7", | ||
"extra": "mean: 1.2677204878643484 usec\nrounds: 168775" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_50[3]", | ||
"value": 741836.2944516438, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.755558318646927e-7", | ||
"extra": "mean: 1.348006302036203 usec\nrounds: 199581" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_50[5]", | ||
"value": 786877.2578952604, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.1230381612563406e-7", | ||
"extra": "mean: 1.2708462342332785 usec\nrounds: 186738" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_50[7]", | ||
"value": 744981.524061593, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.5534679890023254e-7", | ||
"extra": "mean: 1.3423151684998336 usec\nrounds: 198108" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_1000[0]", | ||
"value": 712757.722954239, | ||
"unit": "iter/sec", | ||
"range": "stddev: 1.7996487885747513e-7", | ||
"extra": "mean: 1.4030012833185432 usec\nrounds: 25410" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_1000[1]", | ||
"value": 713188.3244726813, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.438307253098157e-7", | ||
"extra": "mean: 1.4021541936197317 usec\nrounds: 192427" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_1000[3]", | ||
"value": 702136.8131130661, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.509737835682811e-7", | ||
"extra": "mean: 1.4242238568382377 usec\nrounds: 197743" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_1000[5]", | ||
"value": 701322.1275914286, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.634696779823932e-7", | ||
"extra": "mean: 1.4258782956618377 usec\nrounds: 198474" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/metrics/test_benchmark_metrics_histogram,.py::test_histogram_record_1000[7]", | ||
"value": 702331.1901998486, | ||
"unit": "iter/sec", | ||
"range": "stddev: 2.422921184725562e-7", | ||
"extra": "mean: 1.4238296888330553 usec\nrounds: 173970" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/trace/test_benchmark_trace.py::test_simple_start_span", | ||
"value": 70216.72869391947, | ||
"unit": "iter/sec", | ||
"range": "stddev: 0.000004523524301427788", | ||
"extra": "mean: 14.241620459977318 usec\nrounds: 34" | ||
}, | ||
{ | ||
"name": "opentelemetry-sdk/tests/performance/benchmarks/trace/test_benchmark_trace.py::test_simple_start_as_current_span", | ||
"value": 59041.34800631643, | ||
"unit": "iter/sec", | ||
"range": "stddev: 9.778514975920164e-7", | ||
"extra": "mean: 16.93728266321116 usec\nrounds: 22204" | ||
} | ||
] | ||
} | ||
] | ||
} | ||
|