Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[DOCS] - Minor updates to OStream Metrics exporter documentation #1679

Merged
merged 5 commits into from
Oct 14, 2022
Merged
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
180 changes: 105 additions & 75 deletions examples/metrics_simple/README.md
Original file line number Diff line number Diff line change
@@ -1,86 +1,116 @@
# Simple Metrics Example

This example initializes the metrics pipeline with 2 different instrument types.
Here are more detailed explanations of each part.
This example initializes the metrics pipeline with 3 different instrument types:

1: Initialize an exporter and a reader. In this case, we initialize an OStream
Exporter which will print to stdout by default.
The reader periodically collects metrics from the collector and exports them.
- [Counter](https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#counter)
- [Histogram](https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#histogram)
- [Asynchronous/Observable Counter](https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#asynchronous-counter)

```cpp
std::unique_ptr<metric_sdk::MetricExporter> exporter{new exportermetrics::OStreamMetricExporter};
std::unique_ptr<metric_sdk::MetricReader> reader{
new metric_sdk::PeriodicExportingMetricReader(std::move(exporter), options)};
```
Here are more detailed steps with explanation. Note that the steps 4, 6, and 8
are done in Instrumentation library for creating and recording Instruments,
and rest of the steps are done in application to configure SDK.

2: Initialize a MeterProvider and add the reader.
We will use this to obtain Meter objects in the future.
Namespace alias used in below steps

```cpp
auto provider = std::shared_ptr<metrics_api::MeterProvider>(new opentelemetry::metrics::MeterProvider());
auto p = std::static_pointer_cast<metric_sdk::MeterProvider>(provider);
p->AddMetricReader(std::move(reader));
```

3: Create and add a view to the provider.

```cpp
std::unique_ptr<metric_sdk::InstrumentSelector> instrument_selector{
new metric_sdk::InstrumentSelector(metric_sdk::InstrumentType::kCounter, "name_counter")};
std::unique_ptr<metric_sdk::MeterSelector> meter_selector{
new metric_sdk::MeterSelector(name, version, schema)};
std::unique_ptr<metric_sdk::View> sum_view{
new metric_sdk::View{name, "description", metric_sdk::AggregationType::kSum}};
p->AddView(std::move(instrument_selector), std::move(meter_selector), std::move(sum_view));
```

4: Then create a
[Counter](https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/api.md#counter)
instrument from it. Every Meter pointer returned by the
MeterProvider points to the same Meter. This means that the Meter will be able
to combine metrics captured from different functions without having to
constantly pass the Meter around the library.

```cpp
nostd::shared_ptr<metrics_api::Meter> meter = provider->GetMeter(name, "1.2.0");
auto double_counter = meter->CreateDoubleCounter(counter_name);
// Create a label set which annotates metric values
std::map<std::string, std::string> labels = {{"key", "value"}};
auto labelkv = common::KeyValueIterableView<decltype(labels)>{labels};
double_counter->Add(val, labelkv);
```

5: To use histogram instrument, a view with proper `InstrumentType` and `AggregationType`
has to be added to the provider.

```cpp
std::unique_ptr<metric_sdk::InstrumentSelector> histogram_instrument_selector{
new metric_sdk::InstrumentSelector(metric_sdk::InstrumentType::kHistogram, "histogram_name")};
std::unique_ptr<metric_sdk::MeterSelector> histogram_meter_selector{
new metric_sdk::MeterSelector(name, version, schema)};
std::unique_ptr<metric_sdk::View> histogram_view{
new metric_sdk::View{name, "description", metric_sdk::AggregationType::kHistogram}};
p->AddView(std::move(histogram_instrument_selector), std::move(histogram_meter_selector),
std::move(histogram_view));

auto histogram_counter = meter->CreateDoubleHistogram("histogram_name");
auto context = opentelemetry::context::Context{};
histogram_counter->Record(val, labelkv, context);
```

See [CONTRIBUTING.md](../../CONTRIBUTING.md) for instructions on building and
running the example.
```cpp
using namespace metrics_api = opentelemetry::metrics;
using namespace metric_sdk = opentelemetry::sdk::metrics;
using namespace exportermetrics = opentelemetry::exporters;

## Additional Documentation
```

[API
Design](https://github.com/open-o11y/docs/blob/master/cpp-metrics/api-design.md)
1. Initialize an exporter and a reader. In this case, we initialize an OStream
Exporter which will print to stdout by default.
The reader periodically collects metrics from the Aggregation Store and exports them.

[SDK
Design](https://github.com/open-o11y/docs/blob/master/cpp-metrics/sdk-design.md)
```cpp
std::unique_ptr<metric_sdk::MetricExporter> exporter{new exportermetrics::OStreamMetricExporter};
marcalff marked this conversation as resolved.
Show resolved Hide resolved
std::unique_ptr<metric_sdk::MetricReader> reader{
new metric_sdk::PeriodicExportingMetricReader(std::move(exporter), options)};
```

[OStreamExporters
Design](https://github.com/open-o11y/docs/blob/master/cpp-ostream/ostream-exporter-design.md)
2. Initialize a MeterProvider and add the reader.
We will use this to obtain Meter objects in the future.

[OpenTelemetry C++ Metrics
Overview](https://github.com/open-o11y/docs/blob/master/cpp-metrics/README.md)
```cpp
auto provider = std::shared_ptr<metrics_api::MeterProvider>(new metric_sdk::MeterProvider());
auto p = std::static_pointer_cast<metric_sdk::MeterProvider>(provider);
marcalff marked this conversation as resolved.
Show resolved Hide resolved
p->AddMetricReader(std::move(reader));
```

3. Optional: Create a view to map the Counter Instrument to Sum Aggregation.
Add this view to provider. View creation is optional unless we want to add
custom aggregation config, and attribute processor. Metrics SDK will implicitly
create a missing view with default mapping between Instrument and Aggregation.

```cpp
std::unique_ptr<metric_sdk::InstrumentSelector> instrument_selector{
new metric_sdk::InstrumentSelector(metric_sdk::InstrumentType::kCounter, "counter_name")};
std::unique_ptr<metric_sdk::MeterSelector> meter_selector{
new metric_sdk::MeterSelector(name, version, schema)};
std::unique_ptr<metric_sdk::View> sum_view{
new metric_sdk::View{name, "description", metric_sdk::AggregationType::kSum}};
p->AddView(std::move(instrument_selector), std::move(meter_selector), std::move(sum_view));
```

4. Create a Counter instrument from the Meter, and record the measurement.
Every Meter pointer returned by the MeterProvider points to the same Meter.
This means that the Meter will be able to combine metrics captured from
different functions without having to constantly pass the Meter around the library.

```cpp
auto meter = provider->GetMeter(name, "1.2.0");
auto double_counter = meter->CreateDoubleCounter(counter_name);
// Create a label set which annotates metric values
std::map<std::string, std::string> labels = {{"key", "value"}};
auto labelkv = common::KeyValueIterableView<decltype(labels)>{labels};
double_counter->Add(val, labelkv);
```

5. Optional: Create a view to map the Histogram Instrument to Histogram Aggregation.

```cpp
std::unique_ptr<metric_sdk::InstrumentSelector> histogram_instrument_selector{
new metric_sdk::InstrumentSelector(metric_sdk::InstrumentType::kHistogram, "histogram_name")};
std::unique_ptr<metric_sdk::MeterSelector> histogram_meter_selector{
new metric_sdk::MeterSelector(name, version, schema)};
std::unique_ptr<metric_sdk::View> histogram_view{
new metric_sdk::View{name, "description", metric_sdk::AggregationType::kHistogram}};
p->AddView(std::move(histogram_instrument_selector), std::move(histogram_meter_selector),
std::move(histogram_view));
```

6. Create a Histogram instrument from the Meter, and record the measurement.

```cpp
auto meter = provider->GetMeter(name, "1.2.0");
auto histogram_counter = meter->CreateDoubleHistogram("histogram_name");
histogram_counter->Record(val, labelkv);
```

7. Optional: Create a view to map the Observable Counter Instrument to Sum Aggregation

```cpp
std::unique_ptr<metric_sdk::InstrumentSelector> observable_instrument_selector{
new metric_sdk::InstrumentSelector(metric_sdk::InstrumentType::kObservableCounter,
"observable_counter_name")};
std::unique_ptr<metric_sdk::MeterSelector> observable_meter_selector{
new metric_sdk::MeterSelector(name, version, schema)};
std::unique_ptr<metric_sdk::View> observable_sum_view{
new metric_sdk::View{name, "description", metric_sdk::AggregationType::kSum}};
p->AddView(std::move(observable_instrument_selector), std::move(observable_meter_selector),
std::move(observable_sum_view));
```

8. Create a Observable Counter Instrument from the Meter, and add a callback.
The callbackwould be used to record the measurement during metrics collection.
Ensure to keep the Instrument object active for the lifetime of collection.

```cpp
auto meter = provider->GetMeter(name, "1.2.0");
auto counter = meter->CreateDoubleObservableCounter(counter_name);
counter->AddCallback(MeasurementFetcher::Fetcher, nullptr);
```

See [INSTALL.md](../../INSTALL.md) for instructions on building and
running the example.