-
Notifications
You must be signed in to change notification settings - Fork 2.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add Stackdriver Exporter and configs. #7
Conversation
/cc @dinooliva @rghetia |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hi @songy23 not sure if you want to bring it as it is and latter improve it or change it before merging. In any case here are some small issues.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks @pjanotti for the review. This is mostly a copy-and-paste of https://github.com/census-instrumentation/opencensus-service/tree/master/exporter/stackdriverexporter with conforming to the new config and factory in otel-svc. You're right that there're certain things that are stale with the new configs.
* Add basic CI for unit testing
… Histo --> Histogram (#33824) ## Description This PR adds a custom metric function to the transformprocessor to convert exponential histograms to explicit histograms. Link to tracking issue: Resolves #33827 **Function Name** ``` convert_exponential_histogram_to_explicit_histogram ``` **Arguments:** - `distribution` (_upper, midpoint, uniform, random_) - `ExplicitBoundaries: []float64` **Usage example:** ```yaml processors: transform: error_mode: propagate metric_statements: - context: metric statements: - convert_exponential_histogram_to_explicit_histogram("random", [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]) ``` **Converts:** ``` Resource SchemaURL: ScopeMetrics #0 ScopeMetrics SchemaURL: InstrumentationScope Metric #0 Descriptor: -> Name: response_time -> Description: -> Unit: -> DataType: ExponentialHistogram -> AggregationTemporality: Delta ExponentialHistogramDataPoints #0 Data point attributes: -> metric_type: Str(timing) StartTimestamp: 1970-01-01 00:00:00 +0000 UTC Timestamp: 2024-07-31 09:35:25.212037 +0000 UTC Count: 44 Sum: 999.000000 Min: 40.000000 Max: 245.000000 Bucket (32.000000, 64.000000], Count: 10 Bucket (64.000000, 128.000000], Count: 22 Bucket (128.000000, 256.000000], Count: 12 {"kind": "exporter", "data_type": "metrics", "name": "debug"} ``` **To:** ``` Resource SchemaURL: ScopeMetrics #0 ScopeMetrics SchemaURL: InstrumentationScope Metric #0 Descriptor: -> Name: response_time -> Description: -> Unit: -> DataType: Histogram -> AggregationTemporality: Delta HistogramDataPoints #0 Data point attributes: -> metric_type: Str(timing) StartTimestamp: 1970-01-01 00:00:00 +0000 UTC Timestamp: 2024-07-30 21:37:07.830902 +0000 UTC Count: 44 Sum: 999.000000 Min: 40.000000 Max: 245.000000 ExplicitBounds #0: 10.000000 ExplicitBounds #1: 20.000000 ExplicitBounds #2: 30.000000 ExplicitBounds #3: 40.000000 ExplicitBounds #4: 50.000000 ExplicitBounds #5: 60.000000 ExplicitBounds #6: 70.000000 ExplicitBounds #7: 80.000000 ExplicitBounds #8: 90.000000 ExplicitBounds #9: 100.000000 Buckets #0, Count: 0 Buckets #1, Count: 0 Buckets #2, Count: 0 Buckets #3, Count: 2 Buckets #4, Count: 5 Buckets #5, Count: 0 Buckets #6, Count: 3 Buckets #7, Count: 7 Buckets #8, Count: 2 Buckets #9, Count: 4 Buckets #10, Count: 21 {"kind": "exporter", "data_type": "metrics", "name": "debug"} ``` ### Testing - Several unit tests have been created. We have also tested by ingesting and converting exponential histograms from the `statsdreceiver` as well as directly via the `otlpreceiver` over grpc over several hours with a large amount of data. - We have clients that have been running this solution in production for a number of weeks. ### Readme description: ### convert_exponential_hist_to_explicit_hist `convert_exponential_hist_to_explicit_hist([ExplicitBounds])` the `convert_exponential_hist_to_explicit_hist` function converts an ExponentialHistogram to an Explicit (_normal_) Histogram. `ExplicitBounds` is represents the list of bucket boundaries for the new histogram. This argument is __required__ and __cannot be empty__. __WARNING:__ The process of converting an ExponentialHistogram to an Explicit Histogram is not perfect and may result in a loss of precision. It is important to define an appropriate set of bucket boundaries to minimize this loss. For example, selecting Boundaries that are too high or too low may result histogram buckets that are too wide or too narrow, respectively. --------- Co-authored-by: Kent Quirk <[email protected]> Co-authored-by: Tyler Helmuth <[email protected]>
Fixes #6.