Skip to content

Commit

Permalink
Merge cbf309c into e235c1a
Browse files Browse the repository at this point in the history
  • Loading branch information
谢昕辰 authored Aug 25, 2021
2 parents e235c1a + cbf309c commit 9737d89
Show file tree
Hide file tree
Showing 35 changed files with 131 additions and 217 deletions.
3 changes: 1 addition & 2 deletions configs/_base_/models/setr_mla.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,7 @@
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained=\
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth', # noqa
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
backbone=dict(
type='VisionTransformer',
img_size=(768, 768),
Expand Down
3 changes: 1 addition & 2 deletions configs/_base_/models/setr_naive.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,7 @@
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained=\
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth', # noqa
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
backbone=dict(
type='VisionTransformer',
img_size=(768, 768),
Expand Down
3 changes: 1 addition & 2 deletions configs/_base_/models/setr_pup.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,7 @@
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained=\
'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth', # noqa
pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
backbone=dict(
type='VisionTransformer',
img_size=(768, 768),
Expand Down
2 changes: 1 addition & 1 deletion configs/_base_/models/upernet_vit-b16_ln_mln.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
type='EncoderDecoder',
pretrained='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', # noqa
pretrained='pretrain/jx_vit_base_p16_224-80ecf9dd.pth',
backbone=dict(
type='VisionTransformer',
img_size=(512, 512),
Expand Down
22 changes: 12 additions & 10 deletions configs/segformer/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,18 @@
}
```

## Usage

To use other repositories' pre-trained models, it is necessary to convert keys.

We provide a script [`mit2mmseg.py`](../../tools/model_converters/mit2mmseg.py) in the tools directory to convert the key of models from [the official repo](https://github.com/NVlabs/SegFormer) to MMSegmentation style.

```shell
python tools/model_converters/swin2mmseg.py ${PRETRAIN_PATH} ${STORE_PATH}
```

This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.

## Results and models

### ADE20k
Expand Down Expand Up @@ -61,13 +73,3 @@ test_pipeline = [
])
]
```

## How to use segformer official pretrain weights

We convert the backbone weights from the official repo (https://github.com/NVlabs/SegFormer) with `tools/model_converters/mit_convert.py`.

You may follow below steps to start segformer training preparation:

1. Download segformer pretrain weights (Suggest put in `pretrain/`);
2. Run convert script to convert official pretrain weights: `python tools/model_converters/mit_convert.py pretrain/mit_b0.pth pretrain/mit_b0.pth`;
3. Modify `pretrained` of segformer model config, for example, `pretrained` of `segformer_mit-b0_512x512_160k_ade20k.py` is set to `pretrain/mit_b0.pth`;
1 change: 1 addition & 0 deletions configs/setr/setr_mla_512x512_160k_b8_ade20k.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
]
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
pretrained='pretrain/vit_large_patch16_384.pth',
backbone=dict(img_size=(512, 512), drop_rate=0.),
decode_head=dict(num_classes=150),
auxiliary_head=[
Expand Down
1 change: 1 addition & 0 deletions configs/setr/setr_naive_512x512_160k_b16_ade20k.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
]
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
pretrained='pretrain/vit_large_patch16_384.pth',
backbone=dict(img_size=(512, 512), drop_rate=0.),
decode_head=dict(num_classes=150),
auxiliary_head=[
Expand Down
1 change: 1 addition & 0 deletions configs/setr/setr_pup_512x512_160k_b16_ade20k.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
]
norm_cfg = dict(type='SyncBN', requires_grad=True)
model = dict(
pretrained='pretrain/vit_large_patch16_384.pth',
backbone=dict(img_size=(512, 512), drop_rate=0.),
decode_head=dict(num_classes=150),
auxiliary_head=[
Expand Down
18 changes: 18 additions & 0 deletions configs/swin/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,24 @@
}
```

## Usage

To use other repositories' pre-trained models, it is necessary to convert keys.

We provide a script [`swin2mmseg.py`](../../tools/model_converters/swin2mmseg.py) in the tools directory to convert the key of models from [the official repo](https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation) to MMSegmentation style.

```shell
python tools/model_converters/swin2mmseg.py ${PRETRAIN_PATH} ${STORE_PATH}
```

E.g.

```shell
python tools/model_converters/swin2mmseg.py https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth pretrain/swin_base_patch4_window7_224.pth
```

This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.

## Results and models

### ADE20K
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,7 @@
'pretrain_224x224_1K.py'
]
model = dict(
pretrained=\
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth', # noqa
pretrained='pretrain/swin_base_patch4_window12_384.pth',
backbone=dict(
pretrain_img_size=384,
embed_dims=128,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,4 @@
'./upernet_swin_base_patch4_window12_512x512_160k_ade20k_'
'pretrain_384x384_1K.py'
]
model = dict(
pretrained=\
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth', # noqa
)
model = dict(pretrained='pretrain/swin_base_patch4_window12_384_22k.pth')
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,8 @@
'pretrain_224x224_1K.py'
]
model = dict(
pretrained=\
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth', # noqa
pretrained='pretrain/swin_base_patch4_window7_224.pth',
backbone=dict(
embed_dims=128,
depths=[2, 2, 18, 2],
num_heads=[4, 8, 16, 32]),
embed_dims=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32]),
decode_head=dict(in_channels=[128, 256, 512, 1024], num_classes=150),
auxiliary_head=dict(in_channels=512, num_classes=150))
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,4 @@
'./upernet_swin_base_patch4_window7_512x512_160k_ade20k_'
'pretrain_224x224_1K.py'
]
model = dict(
pretrained=\
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth', # noqa
)
model = dict(pretrained='pretrain/swin_base_patch4_window7_224_22k.pth')
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,7 @@
'pretrain_224x224_1K.py'
]
model = dict(
pretrained=\
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth', # noqa
backbone=dict(
depths=[2, 2, 18, 2]),
decode_head=dict(
in_channels=[96, 192, 384, 768],
num_classes=150
),
auxiliary_head=dict(
in_channels=384,
num_classes=150
))
pretrained='pretrain/swin_small_patch4_window7_224.pth',
backbone=dict(depths=[2, 2, 18, 2]),
decode_head=dict(in_channels=[96, 192, 384, 768], num_classes=150),
auxiliary_head=dict(in_channels=384, num_classes=150))
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,7 @@
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py'
]
model = dict(
pretrained=\
'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth', # noqa
pretrained='pretrain/swin_tiny_patch4_window7_224.pth',
backbone=dict(
embed_dims=96,
depths=[2, 2, 6, 2],
Expand Down
18 changes: 18 additions & 0 deletions configs/vit/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,24 @@
}
```

## Usage

To use other repositories' pre-trained models, it is necessary to convert keys.

We provide a script [`vit2mmseg.py`](../../tools/model_converters/vit2mmseg.py) in the tools directory to convert the key of models from [timm](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py) to MMSegmentation style.

```shell
python tools/model_converters/vit2mmseg.py ${PRETRAIN_PATH} ${STORE_PATH}
```

E.g.

```shell
python tools/model_converters/vit2mmseg.py https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth pretrain/jx_vit_base_p16_224-80ecf9dd.pth
```

This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.

## Results and models

### ADE20K
Expand Down
4 changes: 2 additions & 2 deletions configs/vit/upernet_deit-b16_512x512_160k_ade20k.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
_base_ = './upernet_vit-b16_mln_512x512_160k_ade20k.py'

model = dict(
pretrained='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth', # noqa
pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
backbone=dict(drop_path_rate=0.1),
neck=None) # yapf: disable
neck=None)
4 changes: 2 additions & 2 deletions configs/vit/upernet_deit-b16_512x512_80k_ade20k.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
_base_ = './upernet_vit-b16_mln_512x512_80k_ade20k.py'

model = dict(
pretrained='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth', # noqa
pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
backbone=dict(drop_path_rate=0.1),
neck=None) # yapf: disable
neck=None)
4 changes: 2 additions & 2 deletions configs/vit/upernet_deit-b16_ln_mln_512x512_160k_ade20k.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
_base_ = './upernet_vit-b16_mln_512x512_160k_ade20k.py'

model = dict(
pretrained='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth', # noqa
backbone=dict(drop_path_rate=0.1, final_norm=True)) # yapf: disable
pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
backbone=dict(drop_path_rate=0.1, final_norm=True))
5 changes: 3 additions & 2 deletions configs/vit/upernet_deit-b16_mln_512x512_160k_ade20k.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
_base_ = './upernet_vit-b16_mln_512x512_160k_ade20k.py'

model = dict(
pretrained='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth', # noqa
backbone=dict(drop_path_rate=0.1),) # yapf: disable
pretrained='pretrain/deit_base_patch16_224-b5f2ef4d.pth',
backbone=dict(drop_path_rate=0.1),
)
4 changes: 2 additions & 2 deletions configs/vit/upernet_deit-s16_512x512_160k_ade20k.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
_base_ = './upernet_vit-b16_mln_512x512_160k_ade20k.py'

model = dict(
pretrained='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth', # noqa
pretrained='pretrain/deit_small_patch16_224-cd65a155.pth',
backbone=dict(num_heads=6, embed_dims=384, drop_path_rate=0.1),
decode_head=dict(num_classes=150, in_channels=[384, 384, 384, 384]),
neck=None,
auxiliary_head=dict(num_classes=150, in_channels=384)) # yapf: disable
auxiliary_head=dict(num_classes=150, in_channels=384))
4 changes: 2 additions & 2 deletions configs/vit/upernet_deit-s16_512x512_80k_ade20k.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
_base_ = './upernet_vit-b16_mln_512x512_80k_ade20k.py'

model = dict(
pretrained='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth', # noqa
pretrained='pretrain/deit_small_patch16_224-cd65a155.pth',
backbone=dict(num_heads=6, embed_dims=384, drop_path_rate=0.1),
decode_head=dict(num_classes=150, in_channels=[384, 384, 384, 384]),
neck=None,
auxiliary_head=dict(num_classes=150, in_channels=384)) # yapf: disable
auxiliary_head=dict(num_classes=150, in_channels=384))
9 changes: 3 additions & 6 deletions configs/vit/upernet_deit-s16_ln_mln_512x512_160k_ade20k.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,9 @@
_base_ = './upernet_vit-b16_mln_512x512_160k_ade20k.py'

model = dict(
pretrained='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth', # noqa
pretrained='pretrain/deit_small_patch16_224-cd65a155.pth',
backbone=dict(
num_heads=6,
embed_dims=384,
drop_path_rate=0.1,
final_norm=True),
num_heads=6, embed_dims=384, drop_path_rate=0.1, final_norm=True),
decode_head=dict(num_classes=150, in_channels=[384, 384, 384, 384]),
neck=dict(in_channels=[384, 384, 384, 384], out_channels=384),
auxiliary_head=dict(num_classes=150, in_channels=384)) # yapf: disable
auxiliary_head=dict(num_classes=150, in_channels=384))
4 changes: 2 additions & 2 deletions configs/vit/upernet_deit-s16_mln_512x512_160k_ade20k.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
_base_ = './upernet_vit-b16_mln_512x512_160k_ade20k.py'

model = dict(
pretrained='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth', # noqa
pretrained='pretrain/deit_small_patch16_224-cd65a155.pth',
backbone=dict(num_heads=6, embed_dims=384, drop_path_rate=0.1),
decode_head=dict(num_classes=150, in_channels=[384, 384, 384, 384]),
neck=dict(in_channels=[384, 384, 384, 384], out_channels=384),
auxiliary_head=dict(num_classes=150, in_channels=384)) # yapf: disable
auxiliary_head=dict(num_classes=150, in_channels=384))
1 change: 1 addition & 0 deletions configs/vit/upernet_vit-b16_ln_mln_512x512_160k_ade20k.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
]

model = dict(
pretrained='pretrain/vit_base_patch16_224.pth',
backbone=dict(drop_path_rate=0.1, final_norm=True),
decode_head=dict(num_classes=150),
auxiliary_head=dict(num_classes=150))
Expand Down
4 changes: 3 additions & 1 deletion configs/vit/upernet_vit-b16_mln_512x512_160k_ade20k.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,9 @@
]

model = dict(
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
pretrained='pretrain/vit_base_patch16_224.pth',
decode_head=dict(num_classes=150),
auxiliary_head=dict(num_classes=150))

# AdamW optimizer, no weight decay for position embedding & layer norm
# in backbone
Expand Down
4 changes: 3 additions & 1 deletion configs/vit/upernet_vit-b16_mln_512x512_80k_ade20k.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,9 @@
]

model = dict(
decode_head=dict(num_classes=150), auxiliary_head=dict(num_classes=150))
pretrained='pretrain/vit_base_patch16_224.pth',
decode_head=dict(num_classes=150),
auxiliary_head=dict(num_classes=150))

# AdamW optimizer, no weight decay for position embedding & layer norm
# in backbone
Expand Down
12 changes: 1 addition & 11 deletions mmseg/models/backbones/swin.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
from mmseg.ops import resize
from ...utils import get_root_logger
from ..builder import ATTENTION, BACKBONES
from ..utils import PatchEmbed, swin_convert
from ..utils import PatchEmbed


class PatchMerging(BaseModule):
Expand Down Expand Up @@ -564,8 +564,6 @@ class SwinTransformer(BaseModule):
Default: dict(type='LN').
norm_cfg (dict): Config dict for normalization layer at
output of backone. Defaults: dict(type='LN').
pretrain_style (str): Choose to use official or mmcls pretrain weights.
Default: official.
pretrained (str, optional): model pretrained path. Default: None.
init_cfg (dict, optional): The Config for initialization.
Defaults to None.
Expand All @@ -591,7 +589,6 @@ def __init__(self,
use_abs_pos_embed=False,
act_cfg=dict(type='GELU'),
norm_cfg=dict(type='LN'),
pretrain_style='official',
pretrained=None,
init_cfg=None):
super(SwinTransformer, self).__init__()
Expand All @@ -605,9 +602,6 @@ def __init__(self,
f'The size of image should have length 1 or 2, ' \
f'but got {len(pretrain_img_size)}'

assert pretrain_style in ['official', 'mmcls'], 'We only support load '
'official ckpt and mmcls ckpt.'

if isinstance(pretrained, str) or pretrained is None:
warnings.warn('DeprecationWarning: pretrained is a deprecated, '
'please use "init_cfg" instead')
Expand All @@ -617,7 +611,6 @@ def __init__(self,
num_layers = len(depths)
self.out_indices = out_indices
self.use_abs_pos_embed = use_abs_pos_embed
self.pretrain_style = pretrain_style
self.pretrained = pretrained
self.init_cfg = init_cfg

Expand Down Expand Up @@ -713,9 +706,6 @@ def init_weights(self):
else:
state_dict = ckpt

if self.pretrain_style == 'official':
state_dict = swin_convert(state_dict)

# strip prefix of state_dict
if list(state_dict.keys())[0].startswith('module.'):
state_dict = {k[7:]: v for k, v in state_dict.items()}
Expand Down
Loading

0 comments on commit 9737d89

Please sign in to comment.