Skip to content

Commit

Permalink
Update README
Browse files Browse the repository at this point in the history
  • Loading branch information
zytx121 committed Mar 5, 2022
1 parent b849ed2 commit 190f1d8
Show file tree
Hide file tree
Showing 15 changed files with 52 additions and 50 deletions.
7 changes: 4 additions & 3 deletions configs/cfa/README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,8 @@
# [Beyond Bounding-Box: Convex-hull Feature Adaptation for Oriented and Densely Packed Object Detection.](https://openaccess.thecvf.com/content/CVPR2021/papers/Guo_Beyond_Bounding-Box_Convex-Hull_Feature_Adaptation_for_Oriented_and_Densely_Packed_CVPR_2021_paper.pdf)
# CFA
> [Beyond Bounding-Box: Convex-hull Feature Adaptation for Oriented and Densely Packed Object Detection.](https://openaccess.thecvf.com/content/CVPR2021/papers/Guo_Beyond_Bounding-Box_Convex-Hull_Feature_Adaptation_for_Oriented_and_Densely_Packed_CVPR_2021_paper.pdf)
<!-- [ALGORITHM] -->

## Abstract

<div align=center>
Expand All @@ -11,9 +13,8 @@ Detecting oriented and densely packed objects remains challenging for spatial fe

## Results and models

### DOTA1.0
DOTA1.0

#### RepPoints
| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
| ResNet50 (1024,1024,200) | 59.44 | oc | 1x | 3.45 | 15.9 | - | 2 | [rotated_reppoints_r50_fpn_1x_dota_oc](../rotated_reppoints/rotated_reppoints_r50_fpn_1x_dota_oc.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_reppoints/rotated_reppoints_r50_fpn_1x_dota_oc/rotated_reppoints_r50_fpn_1x_dota_oc-d38ce217.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_reppoints/rotated_reppoints_r50_fpn_1x_dota_oc/rotated_reppoints_r50_fpn_1x_dota_oc_20220205_145010.log.json)
Expand Down
6 changes: 3 additions & 3 deletions configs/g_reppoints/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# G-Rep: Gaussian Representation for Arbitrary-Oriented Object Detection.
# G-Rep
> > G-Rep: Gaussian Representation for Arbitrary-Oriented Object Detection.
<!-- [ALGORITHM] -->
## Abstract
Expand All @@ -7,9 +8,8 @@ Core code will release later.

## Results and models

### DOTA1.0
DOTA1.0

#### RepPoints
| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
| ResNet50 (1024,1024,200) | 59.44 | oc | 1x | 3.45 | 15.9 | - | 2 | [rotated_reppoints_r50_fpn_1x_dota_oc](../rotated_reppoints/rotated_reppoints_r50_fpn_1x_dota_oc.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_reppoints/rotated_reppoints_r50_fpn_1x_dota_oc/rotated_reppoints_r50_fpn_1x_dota_oc-d38ce217.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_reppoints/rotated_reppoints_r50_fpn_1x_dota_oc/rotated_reppoints_r50_fpn_1x_dota_oc_20220205_145010.log.json)
Expand Down
6 changes: 3 additions & 3 deletions configs/gliding_vertex/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# [Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection](https://arxiv.org/pdf/1911.09358.pdf)
# Gliding Vertex
> [Gliding Vertex on the Horizontal Bounding Box for Multi-Oriented Object Detection](https://arxiv.org/pdf/1911.09358.pdf)
<!-- [ALGORITHM] -->
## Abstract
Expand All @@ -12,8 +13,7 @@ Object detection has recently experienced substantial progress. Yet, the widely

## Results and models

### DOTA1.0

DOTA1.0

| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
Expand Down
6 changes: 3 additions & 3 deletions configs/gwd/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# [Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss](https://arxiv.org/pdf/2101.11952.pdf)
# GWD
> [Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss](https://arxiv.org/pdf/2101.11952.pdf)
<!-- [ALGORITHM] -->
## Abstract
Expand All @@ -11,9 +12,8 @@ Boundary discontinuity and its inconsistency to the final detection metric have

## Results and models

### DOTA1.0
DOTA1.0

#### RotatedRetinaNet
| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
| ResNet50 (1024,1024,200) | 64.55 | oc | 1x | 3.38 | 14.8 | - | 2 | [rotated_retinanet_hbb_r50_fpn_1x_dota_oc](../rotated_retinanet/rotated_retinanet_hbb_r50_fpn_1x_dota_oc.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_retinanet/rotated_retinanet_hbb_r50_fpn_1x_dota_oc/rotated_retinanet_hbb_r50_fpn_1x_dota_oc-e8a7c7df.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_retinanet/rotated_retinanet_hbb_r50_fpn_1x_dota_oc/rotated_retinanet_hbb_r50_fpn_1x_dota_oc_20220121_095315.log.json)
Expand Down
7 changes: 3 additions & 4 deletions configs/kfiou/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# [The KFIoU Loss for Rotated Object Detection](https://arxiv.org/pdf/2101.11952.pdf)
# KFIoU
> [The KFIoU Loss for Rotated Object Detection](https://arxiv.org/pdf/2101.11952.pdf)
<!-- [ALGORITHM] -->
## Abstract
Expand All @@ -22,17 +23,15 @@ base detectors show the effectiveness of our approach.

## Results and models

### DOTA1.0
DOTA1.0

#### RotatedRetinaNet
| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
| ResNet50 (1024,1024,200) | 64.55 | oc | 1x | 3.38 | 14.8 | - | 2 | [rotated_retinanet_hbb_r50_fpn_1x_dota_oc](../rotated_retinanet/rotated_retinanet_hbb_r50_fpn_1x_dota_oc.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_retinanet/rotated_retinanet_hbb_r50_fpn_1x_dota_oc/rotated_retinanet_hbb_r50_fpn_1x_dota_oc-e8a7c7df.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_retinanet/rotated_retinanet_hbb_r50_fpn_1x_dota_oc/rotated_retinanet_hbb_r50_fpn_1x_dota_oc_20220121_095315.log.json)
| ResNet50 (1024,1024,200) | 69.60 | le90 | 1x | 3.38 | 14.8 | - | 2 | [rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le90](./rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le90.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/kfiou/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le90/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le90-03e02f75.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/kfiou/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le90/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le90_20220209_173225.log.json)
| ResNet50 (1024,1024,200) | 69.76 | oc | 1x | 3.39 | 15.1 | - | 2 | [rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_oc](./rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_oc.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/kfiou/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_oc/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_oc-c00be030.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/kfiou/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_oc/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_oc_20220126_081643.log.json)
| ResNet50 (1024,1024,200) | 69.77 | le135 | 1x | 3.38 | 15.1 | - | 2 | [rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le135](./rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le135.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/kfiou/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le135/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le135-0eaa4156.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/kfiou/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le135/rotated_retinanet_hbb_kfiou_r50_fpn_1x_dota_le135_20220209_173257.log.json)

#### R3Det
| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
| ResNet50 (1024,1024,200) | 69.80 | oc | 1x | 3.54 | 12.1 | - | 2 | [r3det_r50_fpn_1x_dota_oc](../r3det/r3det_r50_fpn_1x_dota_oc.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/r3det/r3det_r50_fpn_1x_dota_oc/r3det_r50_fpn_1x_dota_oc-b1fb045c.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/r3det/r3det_r50_fpn_1x_dota_oc/r3det_r50_fpn_1x_dota_oc_20220126_191226.log.json)
Expand Down
8 changes: 4 additions & 4 deletions configs/kld/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# [Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence](https://arxiv.org/pdf/2106.01883.pdf)
# KLD
> [Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence](https://arxiv.org/pdf/2106.01883.pdf)
<!-- [ALGORITHM] -->
## Abstract
Expand All @@ -11,9 +12,8 @@ Existing rotated object detectors are mostly inherited from the horizontal detec

## Results and models

### DOTA1.0
DOTA1.0

#### RotatedRetinaNet
| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
| ResNet50 (1024,1024,200) | 64.55 | oc | 1x | 3.38 | 14.8 | - | 2 | [rotated_retinanet_hbb_r50_fpn_1x_dota_oc](../rotated_retinanet/rotated_retinanet_hbb_r50_fpn_1x_dota_oc.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_retinanet/rotated_retinanet_hbb_r50_fpn_1x_dota_oc/rotated_retinanet_hbb_r50_fpn_1x_dota_oc-e8a7c7df.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_retinanet/rotated_retinanet_hbb_r50_fpn_1x_dota_oc/rotated_retinanet_hbb_r50_fpn_1x_dota_oc_20220121_095315.log.json)
Expand All @@ -24,7 +24,7 @@ Existing rotated object detectors are mostly inherited from the horizontal detec
| ResNet50 (1024,1024,200) | 69.80 | oc | 1x | 3.54 | 12.1 | - | 2 | [r3det_r50_fpn_1x_dota_oc](../r3det/r3det_r50_fpn_1x_dota_oc.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/r3det/r3det_r50_fpn_1x_dota_oc/r3det_r50_fpn_1x_dota_oc-b1fb045c.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/r3det/r3det_r50_fpn_1x_dota_oc/r3det_r50_fpn_1x_dota_oc_20220126_191226.log.json)
| ResNet50 (1024,1024,200) | 71.83 | oc | 1x | 3.54 | 12.2 | - | 2 | [r3det_kld_r50_fpn_1x_dota_oc](./r3det_kld_r50_fpn_1x_dota_oc.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/kld/r3det_kld_r50_fpn_1x_dota_oc/r3det_kld_r50_fpn_1x_dota_oc-31866226.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/kld/r3det_kld_r50_fpn_1x_dota_oc/r3det_kld_r50_fpn_1x_dota_oc_20220210_114049.log.json)

#### R3Det*

| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
| ResNet50 (1024,1024,200) | 70.18 | oc | 1x | 3.23 | 15.1 | - | 2 | [r3det_tiny_r50_fpn_1x_dota_oc](../r3det/r3det_tiny_r50_fpn_1x_dota_oc.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/r3det/r3det_tiny_r50_fpn_1x_dota_oc/r3det_tiny_r50_fpn_1x_dota_oc-c98a616c.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/r3det/r3det_tiny_r50_fpn_1x_dota_oc/r3det_tiny_r50_fpn_1x_dota_oc_20220209_171624.log.json)
Expand Down
6 changes: 3 additions & 3 deletions configs/oriented_rcnn/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# [Oriented R-CNN for Object Detection](https://openaccess.thecvf.com/content/ICCV2021/papers/Xie_Oriented_R-CNN_for_Object_Detection_ICCV_2021_paper.pdf)
# Oriented R-CNN
> [Oriented R-CNN for Object Detection](https://openaccess.thecvf.com/content/ICCV2021/papers/Xie_Oriented_R-CNN_for_Object_Detection_ICCV_2021_paper.pdf)
<!-- [ALGORITHM] -->
## Abstract
Expand All @@ -12,8 +13,7 @@ Current state-of-the-art two-stage detectors generate oriented proposals through

## Results and models

### DOTA1.0

DOTA1.0

| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
Expand Down
5 changes: 3 additions & 2 deletions configs/r3det/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# [R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object](https://arxiv.org/pdf/1908.05612.pdf)
# R3Det
> [R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object](https://arxiv.org/pdf/1908.05612.pdf)
<!-- [ALGORITHM] -->
## Abstract
Expand All @@ -11,7 +12,7 @@ Rotation detection is a challenging task due to the difficulties of locating the

## Results and models

### DOTA1.0
DOTA1.0

| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
Expand Down
11 changes: 5 additions & 6 deletions configs/redet/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# [ReDet: A Rotation-equivariant Detector for Aerial Object Detection](https://openaccess.thecvf.com/content/CVPR2021/papers/Han_ReDet_A_Rotation-Equivariant_Detector_for_Aerial_Object_Detection_CVPR_2021_paper.pdf)
# ReDet
> [ReDet: A Rotation-equivariant Detector for Aerial Object Detection](https://openaccess.thecvf.com/content/CVPR2021/papers/Han_ReDet_A_Rotation-Equivariant_Detector_for_Aerial_Object_Detection_CVPR_2021_paper.pdf)
<!-- [ALGORITHM] -->
## Abstract
Expand All @@ -10,22 +11,20 @@
Recently, object detection in aerial images has gained much attention in computer vision. Different from objects in natural images, aerial objects are often distributed with arbitrary orientation. Therefore, the detector requires more parameters to encode the orientation information, which are often highly redundant and inefficient. Moreover, as ordinary CNNs do not explicitly model the orientation variation, large amounts of rotation augmented data is needed to train an accurate object detector. In this paper, we propose a Rotation-equivariant Detector (ReDet) to address these issues, which explicitly encodes rotation equivariance and rotation invariance. More precisely, we incorporate rotation-equivariant networks into the detector to extract rotation-equivariant features, which can accurately predict the orientation and lead to a huge reduction of model size. Based on the rotation-equivariant features, we also present Rotation-invariant RoI Align (RiRoI Align), which adaptively extracts rotation-invariant features from equivariant features according to the orientation of RoI. Extensive experiments on several challenging aerial image datasets DOTA-v1.0, DOTA-v1.5 and HRSC2016, show that our method can achieve state-of-the-art performance on the task of aerial object detection. Compared with previous best results, our ReDet gains 1.2, 3.5 and 2.6 mAP on DOTA-v1.0, DOTA-v1.5 and HRSC2016 respectively while reducing the number of parameters by 60% (313 Mb vs. 121 Mb).




## Results and models

### DOTA1.0
DOTA1.0

| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
| ResNet50 (1024,1024,200) | 73.40 | le90 | 1x | 8.46 | 16.0 | - | 2 | [rotated_faster_rcnn_r50_fpn_1x_dota_le90](../rotated_faster_rcnn/rotated_faster_rcnn_r50_fpn_1x_dota_le90.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_faster_rcnn/rotated_faster_rcnn_r50_fpn_1x_dota_le90/rotated_faster_rcnn_r50_fpn_1x_dota_le90-0393aa5c.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/rotated_faster_rcnn/rotated_faster_rcnn_r50_fpn_1x_dota_le90/rotated_faster_rcnn_r50_fpn_1x_dota_le90_20220131_082156.log.json)
| ReResNet50 (1024,1024,200) | 76.68| le90 | 1x | 9.32 | 4.0 | - | 2 | [redet_re50_refpn_1x_dota_le90](./redet_re50_refpn_1x_dota_le90.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/redet/redet_re50_fpn_1x_dota_le90/redet_re50_fpn_1x_dota_le90-724ab2da.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/redet/redet_re50_fpn_1x_dota_le90/redet_re50_fpn_1x_dota_le90_20220130_132751.log.json)
| ReResNet50 (1024,1024,200) | 79.87 | le90 | 1x | | 4.0 | MS+RR | 2 | [redet_re50_refpn_1x_dota_ms_rr_le90](./redet_re50_refpn_1x_dota_ms_rr_le90.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/redet/redet_re50_fpn_1x_dota_ms_rr_le90/redet_re50_fpn_1x_dota_ms_rr_le90-fc9217b5.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/redet/redet_re50_fpn_1x_dota_ms_rr_le90/redet_re50_fpn_1x_dota_ms_rr_le90_20220206_105343.log.json)

Notes:
- `MS` means multiple scale image split.
- `RR` means random rotation.

Please download pretrained weight of ReResNet from [ReDet](https://github.com/csuhan/ReDet), and put it on `work_dirs/pretrain`. BTW, it is normal for `missing keys in source state_dict: xxx.filter ` to appear in the log. Don't worry!
- Please download pretrained weight of ReResNet from [ReDet](https://github.com/csuhan/ReDet), and put it on `work_dirs/pretrain`. BTW, it is normal for `missing keys in source state_dict: xxx.filter ` to appear in the log. Don't worry!

## Citation
```
Expand Down
6 changes: 4 additions & 2 deletions configs/roi_trans/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# [Learning RoI Transformer for Oriented Object Detection in Aerial Images](https://openaccess.thecvf.com/content_CVPR_2019/papers/Ding_Learning_RoI_Transformer_for_Oriented_Object_Detection_in_Aerial_Images_CVPR_2019_paper.pdf)
# RoI Trans
> [Learning RoI Transformer for Oriented Object Detection in Aerial Images](https://openaccess.thecvf.com/content_CVPR_2019/papers/Ding_Learning_RoI_Transformer_for_Oriented_Object_Detection_in_Aerial_Images_CVPR_2019_paper.pdf)
<!-- [ALGORITHM] -->
## Abstract
Expand All @@ -11,7 +12,7 @@ Object detection in aerial images is an active yet challenging task in computer

## Results and models

### DOTA1.0
DOTA1.0

| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
Expand All @@ -20,6 +21,7 @@ Object detection in aerial images is an active yet challenging task in computer
| Swin-tiny (1024,1024,200) | 77.51 | le90 | 1x | | 10.6 | - | 2 | [roi_trans_swin_tiny_fpn_1x_dota_le90](./roi_trans_swin_tiny_fpn_1x_dota_le90.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/roi_trans/roi_trans_swin_tiny_fpn_1x_dota_le90/roi_trans_swin_tiny_fpn_1x_dota_le90-ddeee9ae.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/roi_trans/roi_trans_swin_tiny_fpn_1x_dota_le90/roi_trans_swin_tiny_fpn_1x_dota_le90_20220131_083622.log.json)
| ResNet50 (1024,1024,200) | 79.66 | le90 | 1x | | 13.7 | MS+RR | 2 | [roi_trans_r50_fpn_1x_dota_ms_le90](./roi_trans_r50_fpn_1x_dota_ms_le90.py) | [model](https://download.openmmlab.com/mmrotate/v0.1.0/roi_trans/roi_trans_r50_fpn_1x_dota_ms_rr_le90/roi_trans_r50_fpn_1x_dota_ms_rr_le90-fa99496f.pth) &#124; [log](https://download.openmmlab.com/mmrotate/v0.1.0/roi_trans/roi_trans_r50_fpn_1x_dota_ms_rr_le90/roi_trans_r50_fpn_1x_dota_ms_rr_le90_20220205_171729.log.json)

Notes:
- `MS` means multiple scale image split.
- `RR` means random rotation.

Expand Down
5 changes: 3 additions & 2 deletions configs/rotated_faster_rcnn/README.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# [Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://papers.nips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf)
# Rotated Faster R-CNN
> [Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://papers.nips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf)

<!-- [ALGORITHM] -->
Expand All @@ -14,7 +15,7 @@ State-of-the-art object detection networks depend on region proposal algorithms

## Results and models

### DOTA1.0
DOTA1.0

| Backbone | mAP | Angle | lr schd | Mem (GB) | Inf Time (fps) | Aug | Batch Size | Configs | Download |
|:------------:|:----------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:-------------:|
Expand Down
Loading

0 comments on commit 190f1d8

Please sign in to comment.