-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[MMSIG-87] Migrate SoftWingLoss config to 1.x #2287
Conversation
The first few training epochs using 04/23 14:28:20 - mmengine - WARNING - The prefix is not set in metric class NME.
04/23 14:28:20 - mmengine - INFO - load model from: torchvision://resnet50
04/23 14:28:20 - mmengine - INFO - Loads checkpoint by torchvision backend from path: torchvision://resnet50
04/23 14:28:20 - mmengine - WARNING - The model and loaded state dict do not match exactly
unexpected key in source state_dict: fc.weight, fc.bias
04/23 14:28:20 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
04/23 14:28:20 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
04/23 14:28:20 - mmengine - INFO - Checkpoints will be saved to /home/xinli/Projects/mmpose/work_dirs/td-reg_res50_softwingloss_8xb64-210e_wflw-256x256.
/home/xinli/Projects/mmpose/mmpose/datasets/transforms/common_transforms.py:70: UserWarning: Use the existing "bbox_center" and "bbox_scale". The padding will still be applied.
warnings.warn('Use the existing "bbox_center" and "bbox_scale"'
/home/xinli/Projects/mmpose/mmpose/datasets/transforms/common_transforms.py:70: UserWarning: Use the existing "bbox_center" and "bbox_scale". The padding will still be applied.
warnings.warn('Use the existing "bbox_center" and "bbox_scale"'
04/23 14:28:31 - mmengine - INFO - Epoch(train) [1][ 50/118] lr: 6.193637e-06 eta: 1:36:58 time: 0.235280 data_time: 0.085799 memory: 7279 loss: 90.398080 loss_kpt: 90.398080 acc_pose: 0.008610
04/23 14:28:42 - mmengine - INFO - Epoch(train) [1][100/118] lr: 1.244990e-05 eta: 1:30:04 time: 0.202723 data_time: 0.076319 memory: 7279 loss: 50.954976 loss_kpt: 50.954976 acc_pose: 0.051339
04/23 14:28:45 - mmengine - INFO - Exp name: td-reg_res50_softwingloss_8xb64-210e_wflw-256x256_20230423_142817
04/23 14:28:56 - mmengine - INFO - Epoch(train) [2][ 50/118] lr: 2.095842e-05 eta: 1:29:50 time: 0.219243 data_time: 0.091326 memory: 7279 loss: 14.144817 loss_kpt: 14.144817 acc_pose: 0.276945
04/23 14:29:07 - mmengine - INFO - Epoch(train) [2][100/118] lr: 2.721468e-05 eta: 1:29:27 time: 0.216887 data_time: 0.090792 memory: 7279 loss: 8.813807 loss_kpt: 8.813807 acc_pose: 0.474011
04/23 14:29:11 - mmengine - INFO - Exp name: td-reg_res50_softwingloss_8xb64-210e_wflw-256x256_20230423_142817
04/23 14:29:22 - mmengine - INFO - Epoch(train) [3][ 50/118] lr: 3.572320e-05 eta: 1:28:24 time: 0.214081 data_time: 0.087280 memory: 7279 loss: 6.516705 loss_kpt: 6.516705 acc_pose: 0.689573
04/23 14:29:32 - mmengine - INFO - Epoch(train) [3][100/118] lr: 4.197946e-05 eta: 1:28:08 time: 0.215080 data_time: 0.088150 memory: 7279 loss: 5.227034 loss_kpt: 5.227034 acc_pose: 0.742985
04/23 14:29:36 - mmengine - INFO - Exp name: td-reg_res50_softwingloss_8xb64-210e_wflw-256x256_20230423_142817
04/23 14:29:47 - mmengine - INFO - Epoch(train) [4][ 50/118] lr: 5.048798e-05 eta: 1:27:33 time: 0.215274 data_time: 0.086516 memory: 7279 loss: 4.526577 loss_kpt: 4.526577 acc_pose: 0.799585
04/23 14:29:57 - mmengine - INFO - Epoch(train) [4][100/118] lr: 5.674424e-05 eta: 1:27:16 time: 0.213363 data_time: 0.086669 memory: 7279 loss: 4.481093 loss_kpt: 4.481093 acc_pose: 0.551499
04/23 14:30:01 - mmengine - INFO - Exp name: td-reg_res50_softwingloss_8xb64-210e_wflw-256x256_20230423_142817
04/23 14:30:12 - mmengine - INFO - Epoch(train) [5][ 50/118] lr: 6.250000e-05 eta: 1:27:14 time: 0.223089 data_time: 0.095208 memory: 7279 loss: 4.239157 loss_kpt: 4.239157 acc_pose: 0.731505
04/23 14:30:23 - mmengine - INFO - Epoch(train) [5][100/118] lr: 6.250000e-05 eta: 1:26:45 time: 0.207333 data_time: 0.080608 memory: 7279 loss: 4.130995 loss_kpt: 4.130995 acc_pose: 0.653061
04/23 14:30:26 - mmengine - INFO - Exp name: td-reg_res50_softwingloss_8xb64-210e_wflw-256x256_20230423_142817
04/23 14:30:37 - mmengine - INFO - Epoch(train) [6][ 50/118] lr: 6.250000e-05 eta: 1:26:19 time: 0.215485 data_time: 0.088720 memory: 7279 loss: 3.896597 loss_kpt: 3.896597 acc_pose: 0.904337
04/23 14:30:48 - mmengine - INFO - Epoch(train) [6][100/118] lr: 6.250000e-05 eta: 1:26:07 time: 0.214174 data_time: 0.087395 memory: 7279 loss: 3.809748 loss_kpt: 3.809748 acc_pose: 0.869101
04/23 14:30:51 - mmengine - INFO - Exp name: td-reg_res50_softwingloss_8xb64-210e_wflw-256x256_20230423_142817
04/23 14:31:02 - mmengine - INFO - Epoch(train) [7][ 50/118] lr: 6.250000e-05 eta: 1:25:41 time: 0.215851 data_time: 0.088899 memory: 7279 loss: 3.630974 loss_kpt: 3.630974 acc_pose: 0.869101
04/23 14:31:12 - mmengine - INFO - Epoch(train) [7][100/118] lr: 6.250000e-05 eta: 1:25:27 time: 0.211547 data_time: 0.085165 memory: 7279 loss: 3.713780 loss_kpt: 3.713780 acc_pose: 0.918686
04/23 14:31:16 - mmengine - INFO - Exp name: td-reg_res50_softwingloss_8xb64-210e_wflw-256x256_20230423_142817
04/23 14:31:27 - mmengine - INFO - Epoch(train) [8][ 50/118] lr: 6.250000e-05 eta: 1:25:14 time: 0.218691 data_time: 0.091962 memory: 7279 loss: 3.726970 loss_kpt: 3.726970 acc_pose: 0.914222
04/23 14:31:38 - mmengine - INFO - Epoch(train) [8][100/118] lr: 6.250000e-05 eta: 1:25:02 time: 0.213352 data_time: 0.086842 memory: 7279 loss: 3.540098 loss_kpt: 3.540098 acc_pose: 0.847577
04/23 14:31:41 - mmengine - INFO - Exp name: td-reg_res50_softwingloss_8xb64-210e_wflw-256x256_20230423_142817
04/23 14:31:52 - mmengine - INFO - Epoch(train) [9][ 50/118] lr: 6.250000e-05 eta: 1:24:45 time: 0.213529 data_time: 0.086762 memory: 7279 loss: 3.297371 loss_kpt: 3.297371 acc_pose: 0.949617
04/23 14:31:54 - mmengine - INFO - Exp name: td-reg_res50_softwingloss_8xb64-210e_wflw-256x256_20230423_142817
04/23 14:32:03 - mmengine - INFO - Epoch(train) [9][100/118] lr: 6.250000e-05 eta: 1:24:33 time: 0.212006 data_time: 0.084332 memory: 7279 loss: 3.621521 loss_kpt: 3.621521 acc_pose: 0.898916
04/23 14:32:06 - mmengine - INFO - Exp name: td-reg_res50_softwingloss_8xb64-210e_wflw-256x256_20230423_142817
04/23 14:32:17 - mmengine - INFO - Epoch(train) [10][ 50/118] lr: 6.250000e-05 eta: 1:24:16 time: 0.217338 data_time: 0.090094 memory: 7279 loss: 3.272245 loss_kpt: 3.272245 acc_pose: 0.927296
04/23 14:32:28 - mmengine - INFO - Epoch(train) [10][100/118] lr: 6.250000e-05 eta: 1:24:03 time: 0.211512 data_time: 0.084138 memory: 7279 loss: 3.405219 loss_kpt: 3.405219 acc_pose: 0.907526
04/23 14:32:31 - mmengine - INFO - Exp name: td-reg_res50_softwingloss_8xb64-210e_wflw-256x256_20230423_142817
04/23 14:32:31 - mmengine - INFO - Saving checkpoint at 10 epochs Testing result using the new config and 0.x checkpoint 04/23 14:37:41 - mmengine - WARNING - The prefix is not set in metric class NME.
Loads checkpoint by local backend from path: work_dirs/td-reg_res50_softwingloss_8xb64-210e_wflw-256x256/deeppose_res50_wflw_256x256_softwingloss-4d34f22a_20211212.pth
04/23 14:37:41 - mmengine - INFO - Load checkpoint from work_dirs/td-reg_res50_softwingloss_8xb64-210e_wflw-256x256/deeppose_res50_wflw_256x256_softwingloss-4d34f22a_20211212.pth
/home/xinli/Projects/mmpose/mmpose/datasets/transforms/common_transforms.py:70: UserWarning: Use the existing "bbox_center" and "bbox_scale". The padding will still be applied.
warnings.warn('Use the existing "bbox_center" and "bbox_scale"'
/home/xinli/Projects/mmpose/mmpose/datasets/transforms/common_transforms.py:70: UserWarning: Use the existing "bbox_center" and "bbox_scale". The padding will still be applied.
warnings.warn('Use the existing "bbox_center" and "bbox_scale"'
04/23 14:37:46 - mmengine - INFO - Epoch(test) [50/79] eta: 0:00:02 time: 0.099638 data_time: 0.041459 memory: 564
04/23 14:37:48 - mmengine - INFO - Evaluating NME...
04/23 14:37:48 - mmengine - INFO - Epoch(test) [79/79] NME: 0.044446 data_time: 0.042075 time: 0.080631 |
Codecov ReportPatch coverage has no change and project coverage change:
Additional details and impacted files@@ Coverage Diff @@
## dev-1.x #2287 +/- ##
===========================================
+ Coverage 82.00% 82.03% +0.02%
===========================================
Files 232 232
Lines 13643 13643
Branches 2319 2319
===========================================
+ Hits 11188 11192 +4
+ Misses 1922 1914 -8
- Partials 533 537 +4
Flags with carried forward coverage won't be shown. Click here to find out more. see 1 file with indirect coverage changes Help us with your feedback. Take ten seconds to tell us how you rate us. Have a feature suggestion? Share it here. ☔ View full report in Codecov by Sentry. |
Please also refer to topdown_heatmap to complete the list of WFLW in |
updated in the latest commit |
Motivation
MMSIG-87: migrate face2d deeppose softwingloss model to 1.x
Modification
configs/face_2d_keypoint/topdown_regression/wflw/resnet_softwingloss_wflw.yml
configs/face_2d_keypoint/topdown_regression/wflw/resnet_softwingloss_wflw.md
configs/face_2d_keypoint/topdown_regression/wflw/td-reg_res50_softwingloss_8xb64-210e_wflw-256x256.py
BC-breaking (Optional)
Use cases (Optional)
Checklist
Before PR:
After PR: