-
Notifications
You must be signed in to change notification settings - Fork 1.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[MMSIG-92] Integrate WFLW deeppose model to dev-1.x branch #2265
Changes from 1 commit
bf4d2a5
868eef4
b163af0
8f2b9d9
628b304
a819ed4
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
# Top-down regression-based pose estimation |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
_base_ = [ | ||
'../../../_base_/default_runtime.py', '../../../_base_/datasets/wflw.py' | ||
] | ||
|
||
# runtime | ||
train_cfg = dict(max_epochs=210, val_interval=1) | ||
xin-li-67 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
# optimizer | ||
optim_wrapper = dict(optimizer=dict( | ||
type='Adam', | ||
lr=5e-4, | ||
)) | ||
|
||
# learning policy | ||
param_scheduler = [ | ||
dict( | ||
type='LinearLR', begin=0, end=500, start_factor=0.001, | ||
by_epoch=False), # warm-up | ||
dict( | ||
type='MultiStepLR', | ||
begin=0, | ||
end=210, | ||
milestones=[170, 200], | ||
gamma=0.1, | ||
by_epoch=True) | ||
] | ||
|
||
# automatically scaling LR based on the actual training batch size | ||
auto_scale_lr = dict(base_batch_size=512) | ||
|
||
# codec settings | ||
codec = dict(type='RegressionLabel', input_size=(256, 256)) | ||
|
||
# model settings | ||
model = dict( | ||
type='TopdownPoseEstimator', | ||
data_preprocessor=dict( | ||
type='PoseDataPreprocessor', | ||
mean=[123.675, 116.28, 103.53], | ||
std=[58.395, 57.12, 57.375], | ||
bgr_to_rgb=True), | ||
backbone=dict( | ||
type='ResNet', | ||
depth=50, | ||
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), | ||
), | ||
neck=dict(type='GlobalAveragePooling'), | ||
head=dict( | ||
type='RegressionHead', | ||
in_channels=2048, | ||
num_joints=98, | ||
loss=dict(type='SmoothL1Loss', use_target_weight=True), | ||
decoder=codec), | ||
train_cfg=dict(), | ||
test_cfg=dict( | ||
flip_test=True, | ||
shift_coords=True, | ||
)) | ||
|
||
# base dataset settings | ||
dataset_type = 'WFLWDataset' | ||
data_mode = 'topdown' | ||
data_root = 'data/wflw/' | ||
|
||
# pipelines | ||
train_pipeline = [ | ||
dict(type='LoadImage'), | ||
dict(type='GetBBoxCenterScale'), | ||
dict(type='RandomFlip', direction='horizontal'), | ||
dict(type='RandomBBoxTransform', scale_factor=[0.25], rotate_factor=80), | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Got it. Also, I noticed that the rotate_factor here was incorrect. I changed this part to: # 1.x
dict(
type='RandomBBoxTransform',
scale_factor=[0.75, 1.25],
rotate_factor=60),
# 0.x
dict(
type='TopDownGetRandomScaleRotation', rot_factor=30,
scale_factor=0.25), |
||
dict(type='TopdownAffine', input_size=codec['input_size']), | ||
dict(type='GenerateTarget', encoder=codec), | ||
dict(type='PackPoseInputs') | ||
] | ||
val_pipeline = [ | ||
dict(type='LoadImage'), | ||
dict(type='GetBBoxCenterScale'), | ||
dict(type='TopdownAffine', input_size=codec['input_size']), | ||
dict(type='PackPoseInputs') | ||
] | ||
|
||
# dataloaders | ||
train_dataloader = dict( | ||
batch_size=64, | ||
num_workers=2, | ||
persistent_workers=True, | ||
sampler=dict(type='DefaultSampler', shuffle=True), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='annotations/face_landmarks_wflw_train.json', | ||
data_prefix=dict(img='images/'), | ||
pipeline=train_pipeline, | ||
)) | ||
val_dataloader = dict( | ||
batch_size=32, | ||
num_workers=2, | ||
persistent_workers=True, | ||
drop_last=False, | ||
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False), | ||
dataset=dict( | ||
type=dataset_type, | ||
data_root=data_root, | ||
data_mode=data_mode, | ||
ann_file='annotations/face_landmarks_wflw_test.json', | ||
data_prefix=dict(img='images/'), | ||
test_mode=True, | ||
pipeline=val_pipeline, | ||
)) | ||
test_dataloader = val_dataloader | ||
|
||
# hooks | ||
default_hooks = dict(checkpoint=dict(save_best='NME', rule='greater')) | ||
xin-li-67 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
# evaluators | ||
val_evaluator = dict( | ||
type='NME', | ||
norm_mode='keypoint_distance', | ||
) | ||
test_evaluator = val_evaluator |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, this is redundant. I removed it in the latest commit.