Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support ViTPose #1876

Merged
merged 14 commits into from
Mar 14, 2023
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
_base_ = ['../../../_base_/default_runtime.py']

# runtime
train_cfg = dict(max_epochs=210, val_interval=10)

# optimizer
custom_imports = dict(
imports=['mmpose.engine.optim_wrappers.layer_decay_optim_wrapper'],
allow_failed_imports=False)

optim_wrapper = dict(
optimizer=dict(
type='AdamW', lr=5e-4, betas=(0.9, 0.999), weight_decay=0.1),
paramwise_cfg=dict(
num_layers=12,
layer_decay_rate=0.75,
custom_keys={
'bias': dict(decay_multi=0.0),
'pos_embed': dict(decay_mult=0.0),
'relative_position_bias_table': dict(decay_mult=0.0),
'norm': dict(decay_mult=0.0),
},
),
constructor='LayerDecayOptimWrapperConstructor',
clip_grad=dict(max_norm=1., norm_type=2),
)

# learning policy
param_scheduler = [
dict(
type='LinearLR', begin=0, end=500, start_factor=0.001,
by_epoch=False), # warm-up
dict(
type='MultiStepLR',
begin=0,
end=210,
milestones=[170, 200],
gamma=0.1,
by_epoch=True)
]

# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=512)

# hooks
default_hooks = dict(
checkpoint=dict(save_best='coco/AP', rule='greater', max_keep_ckpts=1))

# codec settings
codec = dict(
type='UDPHeatmap', input_size=(192, 256), heatmap_size=(48, 64), sigma=2)

# model settings
model = dict(
type='TopdownPoseEstimator',
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(
type='mmcls.VisionTransformer',
arch='base',
img_size=(256, 192),
patch_size=16,
qkv_bias=True,
drop_path_rate=0.3,
with_cls_token=False,
output_cls_token=False,
patch_cfg=dict(padding=2),
init_cfg=dict(
type='Pretrained',
checkpoint='pretrained/mae_pretrain_vit_base.pth'),
),
head=dict(
type='HeatmapHead',
in_channels=768,
out_channels=17,
deconv_out_channels=[],
deconv_kernel_sizes=[],
loss=dict(type='KeypointMSELoss', use_target_weight=True),
decoder=codec,
extra=dict(upsample=4, final_conv_kernel=3),
),
test_cfg=dict(
flip_test=True,
flip_mode='heatmap',
shift_heatmap=False,
))

# base dataset settings
data_root = 'data/coco/'
dataset_type = 'CocoDataset'
data_mode = 'topdown'

# pipelines
train_pipeline = [
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(type='RandomBBoxTransform'),
dict(type='TopdownAffine', input_size=codec['input_size'], use_udp=True),
dict(type='GenerateTarget', encoder=codec),
dict(type='PackPoseInputs')
]
val_pipeline = [
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size'], use_udp=True),
dict(type='PackPoseInputs')
]

# data loaders
train_dataloader = dict(
batch_size=64,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=train_pipeline,
))
val_dataloader = dict(
batch_size=32,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_val2017.json',
bbox_file='data/coco/person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=val_pipeline,
))
test_dataloader = val_dataloader

# evaluators
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/person_keypoints_val2017.json')
test_evaluator = val_evaluator
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
_base_ = ['../../../_base_/default_runtime.py']

# runtime
train_cfg = dict(max_epochs=210, val_interval=10)

# optimizer
custom_imports = dict(
imports=['mmpose.engine.optim_wrappers.layer_decay_optim_wrapper'],
allow_failed_imports=False)

optim_wrapper = dict(
optimizer=dict(
type='AdamW', lr=5e-4, betas=(0.9, 0.999), weight_decay=0.1),
paramwise_cfg=dict(
num_layers=12,
layer_decay_rate=0.75,
custom_keys={
'bias': dict(decay_multi=0.0),
'pos_embed': dict(decay_mult=0.0),
'relative_position_bias_table': dict(decay_mult=0.0),
'norm': dict(decay_mult=0.0),
},
),
constructor='LayerDecayOptimWrapperConstructor',
clip_grad=dict(max_norm=1., norm_type=2),
)

# learning policy
param_scheduler = [
dict(
type='LinearLR', begin=0, end=500, start_factor=0.001,
by_epoch=False), # warm-up
dict(
type='MultiStepLR',
begin=0,
end=210,
milestones=[170, 200],
gamma=0.1,
by_epoch=True)
]

# automatically scaling LR based on the actual training batch size
auto_scale_lr = dict(base_batch_size=512)

# hooks
default_hooks = dict(
checkpoint=dict(save_best='coco/AP', rule='greater', max_keep_ckpts=1))

# codec settings
codec = dict(
type='UDPHeatmap', input_size=(192, 256), heatmap_size=(48, 64), sigma=2)

# model settings
model = dict(
type='TopdownPoseEstimator',
data_preprocessor=dict(
type='PoseDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True),
backbone=dict(
type='mmcls.VisionTransformer',
arch='base',
img_size=(256, 192),
patch_size=16,
qkv_bias=True,
drop_path_rate=0.3,
with_cls_token=False,
output_cls_token=False,
patch_cfg=dict(padding=2),
init_cfg=dict(
type='Pretrained',
checkpoint='pretrained/mae_pretrain_vit_base.pth'),
),
head=dict(
type='HeatmapHead',
in_channels=768,
out_channels=17,
deconv_out_channels=(256, 256),
deconv_kernel_sizes=(4, 4),
loss=dict(type='KeypointMSELoss', use_target_weight=True),
decoder=codec),
test_cfg=dict(
flip_test=True,
flip_mode='heatmap',
shift_heatmap=False,
))

# base dataset settings
data_root = 'data/coco/'
dataset_type = 'CocoDataset'
data_mode = 'topdown'

# pipelines
train_pipeline = [
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}),
dict(type='GetBBoxCenterScale'),
dict(type='RandomFlip', direction='horizontal'),
dict(type='RandomHalfBody'),
dict(type='RandomBBoxTransform'),
dict(type='TopdownAffine', input_size=codec['input_size'], use_udp=True),
dict(type='GenerateTarget', encoder=codec),
dict(type='PackPoseInputs')
]
val_pipeline = [
dict(type='LoadImage', file_client_args={{_base_.file_client_args}}),
dict(type='GetBBoxCenterScale'),
dict(type='TopdownAffine', input_size=codec['input_size'], use_udp=True),
dict(type='PackPoseInputs')
]

# data loaders
train_dataloader = dict(
batch_size=64,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=train_pipeline,
))
val_dataloader = dict(
batch_size=32,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_mode=data_mode,
ann_file='annotations/person_keypoints_val2017.json',
bbox_file='data/coco/person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=val_pipeline,
))
test_dataloader = val_dataloader

# evaluators
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/person_keypoints_val2017.json')
test_evaluator = val_evaluator
Loading